Skip to main content

Capillary Phase Trapping

  • Chapter
  • First Online:
Fundamentals and Practical Aspects of Gas Injection

Part of the book series: Petroleum Engineering ((PEEN))

  • 574 Accesses

Abstract

After primary and secondary recovery, substantial amounts of hydrocarbon remain entrapped by capillary forces. This phenomenon, known as capillary trapping. Different factors affect the microscopic trapping mechanism such as pore structure, wettability, capillary pressure, interfacial tension, relative permeability, initial saturation, and other properties of the rock and fluids. Understanding the amount of trapped phase is vital for different applications such as enhance oil recovery (EOR), enhanced gas recovery (EGR), and carbon capture and storage (CCS). In EOR and EGR, the purpose is reducing residual oil saturation, while for CCS, it is opposite, i.e. the target is maximising the amount of trapped CO2. There are two main capillary trapping mechanisms, snap-off and by-passing which are described in detail in this chapter. The laboratory methods and empirical mathematical models that are used to measure and predict the trapped phase saturation are discussed in this chapter. Furthermore, there are various techniques for the mobilization of the trapped hydrocarbon phase. Gas injection is one of the effective methods to remove the trapped phase. This chapter discusses some of the key aspects of phase trapping and mitigation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Original Oil in Place.

  2. 2.

    Enhance Oil Recovery.

Abbreviations

OOIP:

Original Oil in Place

S :

Saturation

\(\varphi\) :

Porosity (%)

k :

Permeability (m2)

ρ :

Density

CCS:

Carbon Capture and Storage

CO2:

Carbon dioxide

N2:

Nitrogen

scCO2:

Supercritical carbon dioxide

gCO2:

Gas carbon dioxide

EOR:

Enhanced Oil Recovery

Nc or Ca:

Capillary number

PV:

Pore Volume

IFT:

Interfacial Tension

CT:

Computed Tomography

USS:

Unsteady State Method

IR:

Initial-Residual

R2:

Coefficient of determination

WAG:

Water alternating gas

N:

Number of data point

CDC:

Capillary desaturation curve

Ctrap:

Trapping capacity

S:

Saturation

Si:

Initial saturation

Sr:

Residual saturation

Snw:

Non-wetting phase saturation

Sw:

Wetting phase saturation

Snwi:

Initial non-wetting phase saturation

Snwr:

Residual non-wetting phase saturation

Sgi:

Initial gas saturation

Sgr:

Residual gas saturation

Soi:

Initial oil saturation

Sor:

Residual oil saturation

Swi:

Initial water saturation

Pc:

Capillary pressure

\(S_{or}^{\exp }\) :

Experimental data of residual oil saturation

\(S_{or}^{cal}\) :

Calculated data of residual oil saturation

\(\overline{{S_{or}^{exp} }}\) :

Average of experimental data set of residual oil saturation

\(S_{nwr}^{\max }\) :

Maximum residual non-wetting saturation

\(S_{nwi}^{\max }\) :

Maximum initial non-wetting phase saturation

\(S_{nwc}\) :

Critical non-wetting phase saturation

Kr:

Relative Permeability

Krw:

Wetting phase relative permeability

Krnw:

Non-wetting phase relative permeability

v :

Velocity (m/s)

μ :

Viscosity (Pa s)

σ :

Interfacial tension (mN/m)

γ :

Surface tension

θ :

Contact angle (degree)

N Bo :

Bond number

Δρ:

Density difference

g :

Acceleration due to gravity

µi:

Invading fluid viscosity

μd:

Displacing fluid viscosity

rb:

Radius pore body

rt:

Radius pore throat

ΔP:

Pressure difference

C :

Land trapping constant

R :

Radius

β :

Heterogeneity factor

L :

Length of the doublet

q w :

Water flow rate

v :

Velocity

µo:

Oil viscosity

μw:

Water viscosity

M :

Mobility ratio

α and β:

Spiteri et al. trapping constant

a and b:

Ma and Youngren trapping constant

\(V_{oi}\) :

Volume of displaced water with oil during primary drainage

\(V_{DV}\) :

Dead volume of cell

\(V_{wf}\) :

Volume of displaced oil during water flooding

\(M_{dry}\) :

Mass of the dry core

\(M_{dragnage}\) :

Mass of the core after drainage

\(M_{wf}\) :

Mass of the core after water flooding

g :

Gas

o :

Oil

w :

Water

i :

Initial

r :

Residual or trapped

nw :

Non-wetting phase (oil or gas)

c :

Critical

exp :

Experimental

cal :

Calculated

max :

Maximum

References

  1. Tzimas E, Georgakaki A, Cortes CG, Peteves SD. Enhanced oil recovery using carbon dioxide in the European energy system. Rep EUR. 2005;21895.

    Google Scholar 

  2. Harper EJ. Optimization of capillary trapping of CO2 sequestration in saline aquifers; 2012.

    Google Scholar 

  3. White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW. Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. J Air Waste Manage Assoc. 2003;53:645–715.

    Article  Google Scholar 

  4. Riazi M, Sohrabi M, Bernstone C, Jamiolahmady M, Ireland S. Visualisation of mechanisms involved in CO2 injection and storage in hydrocarbon reservoir sand water-bearing aquifers. Chem Eng Res Des. 2011;89:1827–40.

    Article  Google Scholar 

  5. Alyafei N. Capillary trapping and oil recovery in altered-wettability carbonate rock; 2015.

    Google Scholar 

  6. Herring AL, Andersson L, Schlüter S, Sheppard A, Wildenschild D. Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media. Adv Water Resour. 2015;79:91–102.

    Article  Google Scholar 

  7. Davis BBJ, Wood WD. Maximizing economic return by minimizing or preventing aqueous phase trapping during completion and stimulation operations. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2004.

    Google Scholar 

  8. Raeini AQ, Bijeljic B, Blunt MJ. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Adv Water Resour. 2015;83:102–10.

    Article  Google Scholar 

  9. Tanino Y, Blunt MJ. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resour Res. 2013;49:4311–9.

    Article  Google Scholar 

  10. Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. J Fluid Mech. 1988;189:165–87.

    Article  Google Scholar 

  11. Morrow NR, Songkran B. Effect of viscous and buoyancy forces on nonwetting phase trapping in porous media. In: Surface phenomena in enhanced oil recovery. Springer; 1981. p. 387–411.

    Google Scholar 

  12. Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA III. New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J Pet Sci Eng. 2010;71:23–9.

    Article  Google Scholar 

  13. Shah DO. Improved oil recovery by surfactant and polymer flooding. Elsevier; 2012.

    Google Scholar 

  14. Teletzke GF, Patel PD, Chen A. Methodology for miscible gas injection EOR screening. In: SPE/DOE symposium on improved oil recovery conference in Asia Pacific. Society of Petroleum Engineers; 2005.

    Google Scholar 

  15. Li S, Genys M, Wang K, Torsæter O. Experimental study of wettability alteration during nanofluid enhanced oil recovery process and its effect on oil recovery. In: SPE reservoir characterisation and simulation conference and exhibition. Society of Petroleum Engineers; 2015

    Google Scholar 

  16. Al-Anazi HA, Xiao J, Al-Eidan AA, Buhidma IM, Ahmed MS, Al-Faifi M, et al. Gas productivity enhancement by wettability alteration of gas-condensate reservoirs. In: European formation damage conference. Society of Petroleum Engineers; 2007

    Google Scholar 

  17. Wang Y, Xu H, Yu W, Bai B, Song X, Zhang J. Surfactant induced reservoir wettability alteration: recent theoretical and experimental advances in enhanced oil recovery. Pet Sci. 2011;8:463–76.

    Article  Google Scholar 

  18. Kumar A, Noh MH, Ozah RC, Pope GA, Bryant SL, Sepehrnoori K, et al. Reservoir simulation of CO2 storage in aquifers. SPE J. 2005;10:336–48.

    Article  Google Scholar 

  19. Kwelle SO. Experimental studies on resistance to fluid displacement in single pores; 2017.

    Google Scholar 

  20. Herring AL, Gilby FJ, Li Z, McClure JE, Turner M, Veldkamp JP, et al. Observations of nonwetting phase snap-off during drainage. Adv Water Resour. 2018;121:32–43.

    Article  Google Scholar 

  21. Pentland CH, Iglauer S, Gharbi O, Okada K, Suekane T. The influence of pore space geometry on the entrapment of carbon dioxide by capillary forces. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers; 2012.

    Google Scholar 

  22. Roof JG. Snap-off of oil droplets in water-wet pores. Soc Pet Eng J. 1970;10:85–90.

    Article  Google Scholar 

  23. Blunt MJ, Scher H. Pore-level modeling of wetting. Phys Rev E. 1995;52:6387.

    Article  Google Scholar 

  24. Wulling W, Pentland CH, Al Mansoori SK, Blunt MJ. Capillary trapping capacity of rocks and sandpacks. In: EUROPEC/EAGE Conference and Exhibition. Society of Petroleum Engineers; 2009

    Google Scholar 

  25. Tanino Y, Blunt MJ. Capillary trapping in sandstones and carbonates: dependence on pore structure. Water Resour Res 2012;48.

    Google Scholar 

  26. Aissaoui A. Etude théorique et expérimentale de l’hystérésis des pressions capillaires et des perméabilités relatives en vue du stockage souterrain de gaz. Ec Des Mines Paris, Paris; 1983.

    Google Scholar 

  27. Jerauld GR. Prudhoe Bay gas/oil relative permeability. SPE Reserv Eng. 1997;12:66–73.

    Article  Google Scholar 

  28. Delclaud J. Laboratory measurements of the residual gas saturation. In: Second society of core analysts European core analysis symposium; 1991. p. 431–51.

    Google Scholar 

  29. Kazemi F, Azin R, Osfouri S. Evaluation of phase trapping models in gas-condensate systems in an unconsolidated sand pack. J Pet Sci Eng. 2020;195:107848.

    Google Scholar 

  30. Pentland CH, Itsekiri E, Al-Mansoori S, Iglauer S, Bijeljic B, Blunt MJ. Measurement of nonwetting-phase trapping in sandpacks. SPE J. 2010;15:274–81.

    Article  Google Scholar 

  31. Alyafei N, Blunt MJ. The effect of wettability on capillary trapping in carbonates. Adv Water Resour. 2016;90:36–50.

    Article  Google Scholar 

  32. Masalmeh SK. The effect of wettability on saturation functions and impact on carbonate reservoirs in the Middle East. In: Abu Dhabi international petroleum exhibition and conference. Society of Petroleum Engineers; 2002.

    Google Scholar 

  33. Akbarabadi M, Piri M. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions. Adv Water Resour. 2013;52:190–206.

    Article  Google Scholar 

  34. Skauge A, Sørvik A, Vik B, Spildo K. Effect of wettability on oil recovery from carbonate material representing different pore classes. In: Proceedings of the international symposium of the society of core analysts; 2006. p. 12–6.

    Google Scholar 

  35. El-Maghraby RM, Blunt MJ. Residual CO2 trapping in Indiana limestone. Environ Sci Technol. 2012;47:227–33.

    Article  Google Scholar 

  36. Pentland CH, Tanino Y, Iglauer S, Blunt MJ. Capillary trapping in water-wet sandstones: coreflooding experiments and pore-network modeling. In: SPE conference. SPE International; 2010.

    Google Scholar 

  37. Pickell JJ, Swanson BF, Hickman WB. Application of air-mercury and oil-air capillary pressure data in the study of pore structure and fluid distribution. Soc Pet Eng J. 1966;6:55–61.

    Article  Google Scholar 

  38. Pentland CH. Measurements of non-wetting phase trapping in porous media; 2011.

    Google Scholar 

  39. Pentland CH, El‐Maghraby R, Iglauer S, Blunt MJ. Measurements of the capillary trapping of super‐critical carbon dioxide in Berea sandstone. Geophys Res Lett. 2011;38.

    Google Scholar 

  40. Al Mansoori SK, Itsekiri E, Iglauer S, Pentland CH, Bijeljic B, Blunt MJ. Measurements of non-wetting phase trapping applied to carbon dioxide storage. Int J Greenh Gas Control. 2010;4:283–8.

    Article  Google Scholar 

  41. Ma TD, Youngren GK. Performance of immiscible water-alternating-gas (IWAG) injection at Kuparuk River Unit, North Slope, Alaska. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1994.

    Google Scholar 

  42. Craig FF. The reservoir engineering aspects of waterflooding, vol. 3. HL Doherty Memorial Fund of AIME New York; 1971.

    Google Scholar 

  43. Corey AT. Mechanics of immiscible fluids in porous media. Water Resources Publication; 1994.

    Google Scholar 

  44. Sohrabi M, Danesh A, Tehrani DH, Jamiolahmady M. Microscopic mechanisms of oil recovery by near-miscible gas injection. Transp Porous Media. 2008;72:351–67.

    Article  Google Scholar 

  45. Buckley JS. Effective wettability of minerals exposed to crude oil. Curr Opin Colloid Interface Sci. 2001;6:191–6.

    Article  Google Scholar 

  46. Buckley JS, Bousseau C, Liu Y. Wetting alteration by brine and crude oil: from contact angles to cores. SPE J. 1996;1:341–50.

    Article  Google Scholar 

  47. Anderson WG. Wettability literature survey-part 1: rock/oil/brine interactions and the effects of core handling on wettability. J Pet Technol. 1986;38:1,121–125,144.

    Google Scholar 

  48. Anderson WG. Wettability literature survey part 5: the effects of wettability on relative permeability. J Pet Technol. 1987;39:1, 451–453, 468.

    Google Scholar 

  49. Gharbi O, Blunt MJ. The impact of wettability and connectivity on relative permeability in carbonates: a pore network modeling analysis. Water Resour Res. 2012;48.

    Google Scholar 

  50. Land CS. Comparison of calculated with experimental imbibition relative permeability. Soc Pet Eng J. 1971;11:419–25.

    Article  Google Scholar 

  51. Longino BL. Residual non-wetting phase retention and mobilization in rough-walled fractures. Queen’s University at Kingston; 1999.

    Google Scholar 

  52. Wilson JL. Laboratory investigation of residual liquid organics from spills, leaks, and the disposal of hazardous wastes in groundwater. Robert S. Kerr Environmental Research Laboratory, Office of Research and …; 1990.

    Google Scholar 

  53. Eikevåg TK. Experimental study of residual gas saturation using both spontaneous and forced imbibition method, where IsoparL is the wetting phase. Institutt for petroleumsteknologi og anvendt geofysikk; 2012.

    Google Scholar 

  54. Van Duijn CJ, Molenaar J, De Neef MJ. The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transp Porous Media. 1995;21:71–93.

    Article  Google Scholar 

  55. Chaouche M, Rakotomalala N, Salin D, Xu B, Yortsos YC. Capillary effects in drainage in heterogeneous porous media: continuum modelling, experiments and pore network simulations. Chem Eng Sci. 1994;49:2447–66.

    Article  Google Scholar 

  56. Van Batenburg DW, Bruining J, Bakken H, Palmgren CTS. The effect of capillary forces in heterogeneous “flow-units”: a streamline approach. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1991

    Google Scholar 

  57. Or D. Scaling of capillary, gravity and viscous forces affecting flow morphology in unsaturated porous media. Adv Water Resour. 2008;31:1129–36.

    Article  Google Scholar 

  58. Zhang C, Oostrom M, Wietsma TW, Grate JW, Warner MG. Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels. 2011;25:3493–505.

    Article  Google Scholar 

  59. Bear J. Dynamics of fluids in porous media. Courier Corporation; 2013.

    Google Scholar 

  60. Suekane T, Nobuso T, Hirai S, Kiyota M. Geological storage of carbon dioxide by residual gas and solubility trapping. Int J Greenh Gas Control. 2008;2:58–64.

    Article  Google Scholar 

  61. Shook M, Li D, Lake LW. Scaling immiscible flow through permeable media by inspectional analysis. IN SITU-NEW YORK. 1992;16:311.

    Google Scholar 

  62. Heiss VI, Neuweiler I, Ochs S, Färber A. Experimental investigation on front morphology for two‐phase flow in heterogeneous porous media. Water Resour Res. 2011;47.

    Google Scholar 

  63. Morrow NR, Chatzis I, Taber JJ. Entrapment and mobilization of residual oil in bead packs. SPE Reserv Eng. 1988;3:927–34.

    Article  Google Scholar 

  64. Willhite GP. Waterflooding, vol. 3. Richardson, Texas Textbook Series SPE 1986.

    Google Scholar 

  65. Lenormand R, Zarcone C, Sarr A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J Fluid Mech. 1983;135:337–53.

    Google Scholar 

  66. Herring AL. An investigation into the pore-scale mechanisms of capillary trapping: application to geologic CO2 sequestration; 2014.

    Google Scholar 

  67. Chatzis I, Morrow NR. Correlation of capillary number relationships for sandstone. Soc Pet Eng J. 1984;24:555–62.

    Article  Google Scholar 

  68. Cense AW, Berg S. The viscous-capillary paradox in 2-phase flow in porous media. In: International symposium of the society of core analysts held in Noordwijk. Netherlands; 2009. p. 27–30.

    Google Scholar 

  69. Ding M, Kantzas A. Capillary number correlations for gas-liquid systems. In: Canadian international pet conference. Petroleum Society of Canada; 2004.

    Google Scholar 

  70. Shen P, Zhu B, Li X-B, Wu Y-S. An experimental study of the influence of interfacial tension on water–oil two-phase relative permeability. Transp Porous Media. 2010;85:505–20.

    Article  Google Scholar 

  71. Chatzis I, Kuntamukkula MS, Morrow NR. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reserv Eng. 1988;3:902–12.

    Article  Google Scholar 

  72. Bona N, Garofoli L, Radaelli F, Zanaboni C, Bendotti A, Mezzapesa D. Trapped gas saturation measurements: new perspectives. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2014.

    Google Scholar 

  73. Lake LW. Enhanced oil recovery; 1989.

    Google Scholar 

  74. Dake JMK. Essentials of engineering hydraulics; 1983.

    Google Scholar 

  75. Coninck H, Loos M, Metz B, Davidson O, Meyer L. IPCC special report on carbon dioxide capture and storage. Intergov Panel Clim Chang; 2005.

    Google Scholar 

  76. Chatzis I, Dullien FAL. Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J Colloid Interface Sci. 1983;91:199–222.

    Article  Google Scholar 

  77. Taber JJ. Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. Soc Pet Eng J. 1969;9:3–12.

    Article  Google Scholar 

  78. Melrose JC. Role of capillary forces in detennining microscopic displacement efficiency for oil recovery by waterflooding. J Can Pet Technol. 1974;13.

    Google Scholar 

  79. Foster WR. A low-tension waterflooding process. J Pet Technol. 1973;25:205–10.

    Article  Google Scholar 

  80. Flett M, Gurton R, Taggart I. The function of gas-water relative permeability hysteresis in the sequestration of carbon dioxide in saline formations. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers; 2004.

    Google Scholar 

  81. Juanes R, Spiteri EJ, Orr FM, Blunt MJ. Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res. 2006;42.

    Google Scholar 

  82. Juanes R, MacMinn C. Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In: SPE symposium on improved oil recovery. Society of Petroleum Engineers; 2008.

    Google Scholar 

  83. Qi R, LaForce TC, Blunt MJ. Design of carbon dioxide storage in aquifers. Int J Greenh Gas Control. 2009;3:195–205.

    Article  Google Scholar 

  84. Hesse M, Tchelepi HA, Orr FM. Scaling analysis of the migration of CO2 in saline aquifers. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2006.

    Google Scholar 

  85. Obi EI, Blunt MJ. Streamline‐based simulation of carbon dioxide storage in a north sea aquifer. Water Resour Res. 2006;42.

    Google Scholar 

  86. Saadatpoor E, Bryant SL, Sepehrnoori K. Effect of heterogeneous capillary pressure on buoyancy-driven CO2 migration. In: SPE symposium on improved oil recovery. Society of Petroleum Engineers; 2008.

    Google Scholar 

  87. Ide ST, Jessen K, Orr FM Jr. Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping. Int J Greenh Gas Control. 2007;1:481–91.

    Article  Google Scholar 

  88. Hawkes CD, McLellan PJ, Bachu S. Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J Can Pet Technol. 2005;44.

    Google Scholar 

  89. Lackner KS. A guide to CO2 sequestration. Science (80-) 2003;300:1677–8.

    Google Scholar 

  90. Kralik JG, Manak LJ, Jerauld GR, Spence AP. Effect of trapped gas on relative permeability and residual oil saturation in an oil-wet sandstone. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2000.

    Google Scholar 

  91. Al Mansoori SK, Iglauer S, Pentland CH, Blunt MJ. Three-phase measurements of oil and gas trapping in sand packs. Adv Water Resour. 2009;32:1535–42.

    Article  Google Scholar 

  92. Crowell DC, Dean GW, Loomis AG. Efficiency of gas displacement from a water-drive reservoir, vol. 6735. US Department of the Interior, Bureau of Mines; 1966.

    Google Scholar 

  93. Krevor SCM, Pini R, Zuo L, Benson SM. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour Res 2012;48.

    Google Scholar 

  94. Alafnan S, Aljawad M, Alismail F, Almajed A. Enhanced recovery from gas condensate reservoirs through renewable energy sources. Energy Fuels. 2019;33:10115–22.

    Article  Google Scholar 

  95. Martinez RGF. Altering wettability in gas condensate sandstone reservoirs for gas mobillity improvement. Texas A & M University; 2012.

    Google Scholar 

  96. Fan L, Harris B, Jamaluddin A. Understanding gas-condensate reservoirs. Oilf Rev. 2005:14–27. https://doi.org/10.4043/25710-MS.

  97. Fulcher RA Jr, Ertekin T, Stahl CD. Effect of capillary number and its constituents on two-phase relative permeability curves. J Pet Technol. 1985;37:249–60.

    Article  Google Scholar 

  98. Azin R, Sedaghati H, Fatehi R, Osfouri S, Sakhaei Z. Production assessment of low production rate of well in a supergiant gas condensate reservoir: application of an integrated strategy. J Pet Explor Prod Technol. 2019;9:543–60.

    Article  Google Scholar 

  99. Sakhaei Z, Mohamadi-Baghmolaei M, Azin R, Osfouri S. Study of production enhancement through wettability alteration in a super-giant gas-condensate reservoir. J Mol Liq. 2017;233:64–74.

    Article  Google Scholar 

  100. Mohamadi-Baghmolaei M, Azin R, Osfouri S, Zendehboudi S. Evaluation of mass transfer coefficient for gas condensates in porous systems: experimental and modeling. Fuel. 2019;255:115507.

    Google Scholar 

  101. Ahmadi R, Osfouri S, Azin R. Wettability alteration of carbonate oil reservoir surface using biocompatible nanoparticles. Mater Res Express. 2018;6:25033.

    Article  Google Scholar 

  102. Mohamadi-Baghmolaei M, Azin R, Osfouri S, Zendehboudi S. Experimental and modeling investigation of non-equilibrium condensate vaporization in porous systems: effective determination of mass transfer coefficient. Fuel. 2020;262:116011.

    Google Scholar 

  103. Luo K, Li S, Zheng X, Chen G, Dai Z, Liu N. Experimental investigation into revaporization of retrograde condensate by lean gas injection. In: SPE Asia Pacific oil and gas conference and exhibition. Society of Petroleum Engineers; 2001

    Google Scholar 

  104. Khadar RH, Aminshahidy B, Hashemi A, Ghadami N. Application of gas injection and recycling to enhance condensate recovery. Pet Sci Technol. 2013;31:1057–65.

    Article  Google Scholar 

  105. Settari A, Bachman RC, Hovem KA, Paulsen SG. Productivity of fractured gas condensate wells-a case study of the Smorbukk field. SPE Reserv Eng. 1996;11:236–44.

    Article  Google Scholar 

  106. Yuan C, Zhang Z, Liu K. Assessment of the recovery and front contrast of CO2 EOR and sequestration in a new gas condensate reservoir by compositional simulation and seismic modeling. Fuel. 2015;142:81–6.

    Article  Google Scholar 

  107. Kossack CA, Opdal ST. Recovery of condensate from a heterogeneous reservoir by the injection of a slug of methane followed by nitrogen. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1988.

    Google Scholar 

  108. Sanger PJ, Hagoort J. Recovery of gas-condensate by nitrogen injection compared with methane injection. SPE J. 1998;3:26–33.

    Article  Google Scholar 

  109. Jamaluddin AKM, Ye S, Thomas J, D’Cruz D, Nighswander J. Experimental and theoretical assessment of using propane to remediate liquid buildup in condensate reservoirs. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2001.

    Google Scholar 

  110. Antoci JC, Briggiler NJ, Chadwick JA. Crosslinked methanol: analysis of a successful experience in fracturing gas wells. In: SPE Latin American and Caribbean petroleum engineering conference. Society of Petroleum Engineers; 2001.

    Google Scholar 

  111. Barnum RS, Brinkman FP, Richardson TW, Spillette AG. Gas condensate reservoir behaviour: productivity and recovery reduction due to condensation. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1995.

    Google Scholar 

  112. Du L, Walker JG, Pope GA, Sharma MM, Wang P. Use of solvents to improve the productivity of gas condensate wells. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2000.

    Google Scholar 

  113. Ahmadi R, Farmani Z, Osfouri S, Azin R. Condensate blockage remediation in a gas reservoir through wettability alteration using natural CaCO3 nanoparticles. Colloids Surf Physicochem Eng Asp. 2019;579:123702.

    Google Scholar 

  114. Naghizadeh A, Azin R, Osfouri S, Fatehi R. Wettability alteration of calcite and dolomite carbonates using silica nanoparticles coated with fluorine groups. J Pet Sci Eng. 2020:106915.

    Google Scholar 

  115. Saboori R, Azin R, Osfouri S, Sabbaghi S, Bahramian A. Wettability alteration of carbonate cores by alumina-nanofluid in different base fluids and temperature. J Sustain Energy Eng. 2018;6:84–98.

    Article  Google Scholar 

  116. Saboori R, Azin R, Osfouri S, Sabbaghi S, Bahramian A. Wettability alteration of carbonate rocks from strongly liquid-wetting to strongly gas-wetting by fluorine-doped silica coated by fluorosilane. J Dispers Sci Technol. 2018;39:767–76.

    Article  Google Scholar 

  117. Saboori R, Azin R, Osfouri S, Sabbaghi S, Bahramian A. Synthesis of fluorine-doped silica-coating by fluorosilane nanofluid to ultrahydrophobic and ultraoleophobic surface. Mater Res Express. 2017;4:105010.

    Google Scholar 

  118. Saboori R, Azin R, Osfouri S, Sabbaghi S, Bahramian A. Stability of alumina nanofluid in water/methanol base fluid in the presence of different salts. J Nanofluids. 2018;7:235–45.

    Article  Google Scholar 

  119. Sakhaei Z, Azin R, Naghizadeh A, Osfouri S, Saboori R, Vahdani H. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration. Mater Res Express. 2018;5:35008.

    Article  Google Scholar 

  120. Spiteri EJ, Juanes R, Blunt MJ, Orr FM. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE J. 2008;13:277–88.

    Article  Google Scholar 

  121. Hu R, Wan J, Kim Y, Tokunaga TK. Wettability impact on supercritical CO2 capillary trapping: pore-scale visualization and quantification. Water Resour Res. 2017;53:6377–94.

    Article  Google Scholar 

  122. Princ T, Fideles HMR, Koestel J, Snehota M. The impact of capillary trapping of air on satiated hydraulic conductivity of sands interpreted by X-ray microtomography. Water. 2020;12:445.

    Article  Google Scholar 

  123. Mehmani A, Kelly S, Torres-Verdín C, Balhoff M. Residual oil saturation following gas injection in sandstones: Microfluidic quantification of the impact of pore-scale surface roughness. Fuel. 2019;251:147–61.

    Article  Google Scholar 

  124. Oh SG, Slattery JC. Interfacial tension required for significant displacement of residual oil. Soc Pet Eng J. 1979;19:83–96.

    Article  Google Scholar 

  125. Chatzis I, Morrow NR, Lim HT. Magnitude and detailed structure of residual oil saturation. Soc Pet Eng J. 1983;23:311–26.

    Article  Google Scholar 

  126. Wardlaw NC. The effects of geometry, wettability, viscosity and interfacial tension on trapping in single pore-throat pairs. J Can Pet Technol. 1982;21.

    Google Scholar 

  127. Nguyen VH, Sheppard AP, Knackstedt MA, Pinczewski WV. The effect of displacement rate on imbibition relative permeability and residual saturation. J Pet Sci Eng. 2006;52:54–70.

    Article  Google Scholar 

  128. Rose W, Witherspoon PA. Studies of waterflood performance. Division of the Ill. State Geol. Survey; 1956.

    Google Scholar 

  129. Manceau J-C, Hatzignatiou DG, De Lary L, Jensen NB, Réveillère A. Mitigation and remediation technologies and practices in case of undesired migration of CO2 from a geological storage unit—current status. Int J Greenh Gas Control. 2014;22:272–90.

    Article  Google Scholar 

  130. Kong X, Ohadi M. Applications of micro and nano technologies in the oil and gas industry-overview of the recent progress. In: Abu Dhabi international petroleum exhibition and conference. Society of Petroleum Engineers; 2010.

    Google Scholar 

  131. Company BP. BP statistical review of world energy June 2005. British Petroleum Educational Service; 2005.

    Google Scholar 

  132. Green DW, Willhite GP. Enhanced oil recovery, vol. 6. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers Richardson, TX; 1998.

    Google Scholar 

  133. Shah DO. Surface phenomena in enhanced oil recovery. Springer; 1981.

    Google Scholar 

  134. Stegemeier GL. Mechanisms of entrapment and mobilization of oil in porous media. Improv Oil Recover Surfactant Polym Flood. 1997:55–91.

    Google Scholar 

  135. Bath PGH. Status report on miscible/immiscible gas flooding. J Pet Sci Eng. 1989;2:103–17.

    Article  Google Scholar 

  136. DePaolo DJ, Cole DR. Geochemistry of geologic carbon sequestration: an overview. Rev Mineral Geochemistry. 2013;77:1–14.

    Article  Google Scholar 

  137. Marley MC, Hazebrouck DJ, Walsh MT. The application of in situ air sparging as an innovative soils and ground water remediation technology. Groundw Monit Remediat. 1992;12:137–45.

    Article  Google Scholar 

  138. Lake LW, Carey GF, Pope GA, Sepehrnoori K. Isothermal, multiphase, multicomponent fluid flow in permeable media. In Situ (United States). 1984;8.

    Google Scholar 

  139. Al-Gharbi MS, Blunt MJ. 2D dynamic pore-scale network model of imbibition. Dev Water Sci. 2004;55: 71–82 (Elsevier).

    Google Scholar 

  140. Doorwar S, Mohanty KK. Fingering function for unstable immiscible flows. In: SPE reservoir simulation symposium. Society of Petroleum Engineers; 2015.

    Google Scholar 

  141. Joekar-Niasar V, Doster F, Armstrong RT, Wildenschild D, Celia MA. Trapping and hysteresis in two-phase flow in porous media: a pore-network study. Water Resour Res. 2013;49:4244–56.

    Article  Google Scholar 

  142. Valvatne P. Predictive porescale modeling of single and multiphase flow. Transp Porous Media. 2004;55:71–89.

    Google Scholar 

  143. Andrew M, Menke H, Blunt MJ, Bijeljic B. The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp Porous Media. 2015;110:1–24.

    Article  Google Scholar 

  144. Hara SK, Christman PG. Investigation of a cyclic countercurrent light-oil/CO2 immiscible process. SPE Adv Technol Ser. 1993;1:159–65.

    Article  Google Scholar 

  145. Firoozabadi A, Tan JCT. Miscible displacement in fractured porous media: part II-analysis. In: SPE/DOE improved oil recovery symposium. Society of Petroleum Engineers; 1994.

    Google Scholar 

  146. Pande KK, Orr FM Jr. Analytical computation of breakthrough recovery for CO2 floods in layered reservoirs. Pap SPE. 1990;20177:22–5.

    Google Scholar 

  147. Wylie P, Mohanty KK. Effect of water saturation on oil recovery by near-miscible gas injection. SPE Reserv Eng. 1997;12:264–8.

    Article  Google Scholar 

  148. Bennion DB, Thomas FB, Bietz RF, Bennion DW. Remediation of water and hydrocarbon phase trapping problems in low permeability gas reservoirs. J Can Pet Technol. 1999;38.

    Google Scholar 

  149. Caudle BH, Dyes AB. Improving miscible displacement by gas-water injection. Trans AIME. 1958;213:281–3.

    Article  Google Scholar 

  150. Christensen JR, Stenby EH, Skauge A. Review of WAG field experience. In: International petroleum conference and exhibition of Mexico. Society of Petroleum Engineers; 1998.

    Google Scholar 

  151. Van Dijke MIJ, Sorbie KS. Pore-scale modelling of three-phase flow in mixed-wet porous media: multiple displacement chains. J Pet Sci Eng. 2003;39:201–16.

    Article  Google Scholar 

  152. Piri M, Blunt MJ. Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. II. Results. Phys Rev E. n.d.;71:26302.

    Google Scholar 

  153. Suicmez VS, Piri M, Blunt MJ. Pore-scale simulation of water alternate gas injection. Transp Porous Media. 2007;66:259–86.

    Article  Google Scholar 

  154. Oak MJ. Three-phase relative permeability of intermediate-wet Berea sandstone. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1991.

    Google Scholar 

  155. Blunt MJ. An empirical model for three-phase relative permeability. SPE J. 2000;5:435–45.

    Article  Google Scholar 

  156. Baker LE. Three-phase relative permeability correlations. In: SPE enhanced oil recovery symposium. Society of Petroleum Engineers; 1988.

    Google Scholar 

  157. Egermann P, Vizika O, Dallet L, Requin C, Sonier F. Hysteresis in three-phase flow: experiments, modeling and reservoir simulations. In: SPE European petroleum conference. Society of Petroleum Engineers; 2000.

    Google Scholar 

  158. Element DJ, Masters JHK, Sargent NC, Jayasekera AJ, Goodyear SG. Assessment of three-phase relative permeability models using laboratory hysteresis data. In: SPE/DOE symposium on improved oil recovery conference in Asia Pacific. Society of Petroleum Engineers; 2003.

    Google Scholar 

  159. Feng Q, Di L, Tang G, Chen Z, Wang X, Zou J. A visual micro-model study: The mechanism of water alternative gas displacement in porous media. In: SPE/DOE symposium on improved oil recovery. Society of Petroleum Engineers; 2004.

    Google Scholar 

  160. DiCarlo DA, Akshay S, Blunt MJ. Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks. SPE J. 2000;5:82–91.

    Article  Google Scholar 

  161. Dicarlo DA, Sahni A, Blunt MJ. The effect of wettability on three-phase relative permeability. Transp Porous Media. 2000;39:347–66.

    Article  Google Scholar 

  162. Wu Y, John JC, Yongle H. The three sisters: acid gas injection, carbon capture and sequestration, and enhanced oil recovery; 2019. p. 7.

    Google Scholar 

  163. Land CS. Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. Soc Pet Eng J. 1968;8:149–56. https://doi.org/10.2118/1942-PA.

    Article  Google Scholar 

  164. Spiteri EJ, Juanes R. Impact of relative permeability hysteresis on the numerical simulation of WAG injection. J Pet Sci Eng. 2006;50:115–39.

    Article  Google Scholar 

  165. Suzanne K, Hamon G, Billiotte J, Trocme V. Experimental relationships between residual gas saturation and initial gas saturation in heterogeneous sandstone reservoirs. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2003.

    Google Scholar 

  166. Gittins P, Iglauer S, Pentland CH, Al-Mansoori S, Al-Sayari S, Bijeljic B, et al. Nonwetting phase residual saturation in sand packs. J Porous Media. 2010;13.

    Google Scholar 

  167. Jerauld GR. General three-phase relative permeability model for Prudhoe Bay. SPE Reserv Eng. 1997;12:255–63.

    Article  Google Scholar 

  168. Kleppe J, Delaplace P, Lenormand R, Hamon G, Chaput E. Representation of capillary pressure hysteresis in reservoir simulation. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 1997.

    Google Scholar 

  169. Spiteri E, Juanes R, Blunt MJ, Orr FM. Relative-permeability hysteresis: trapping models and application to geological CO2 sequestration. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers; 2005.

    Google Scholar 

  170. Breiman L. Probability. SIAM, Philadelphia. Math Rev 93d. 1992;60001.

    Google Scholar 

  171. Lawson CL, Hanson RJ. Solving least squares problems, vol. 15. Siam; 1995.

    Google Scholar 

  172. Tiab D, Donaldson EC. Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Gulf Professional Publishing; 2015.

    Google Scholar 

  173. Dullien FAL. Porous media: fluid transport and pore structure. Academic Press; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azin .

Editor information

Editors and Affiliations

Appendix: Derivation of Velocity Ratio Expression

Appendix: Derivation of Velocity Ratio Expression

The purpose of this Appendix is to drive the velocity ratio expression in the pore doublet model, which determine the interface position (Fig. 10.25).

Fig. 10.25
figure 25

Schematic of the pore doublet structure

The magnitude of capillary pressure affect the velocity of the interface in both capillary tube. The static capillary pressure function (Pc equation) is defined as Eq. 10.23.

$$P_{c} = \frac{2\sigma \cos \theta }{R}$$
(10.24)

where σ is the interfacial tension between invading and invaded fluid, θ is the advancing contact angle and R is the radius of the capillary.

Furthermore, the volumetric flow rate in either path is given by Hagen-Poiseuille (H-P) equation:

$$q = \frac{{\pi R^{4} }}{8\mu }\frac{\Delta P}{L}$$
(10.25)

where R is the radius of the capillary, L is the length of the flow path of the doublet, assumed to be the same in both branches and μ is the viscosity, assuming that both fluids have the same viscosity. The magnitude of viscose pressure drop can be calculated using Eq. 10.24, if the flow rate was known. Equation 10.24, implies the assumptions of cylindrical capillaries of circular cross-section and of fully developed and steady laminar flows that none of which is likely to be met in reality.

The total volumetric flow rate through the doublet, if the water is supplied at the volume flow rate, qw, to the doublet can be written as:

$$q_{w} = q_{1} + q_{2} = \frac{\pi }{8\mu L}\left( {R_{1}^{4} \Delta P_{1} + R_{2}^{4} \Delta P_{2} } \right)$$
(10.26)

where ql is volume flow rates in capillary 1 and q2 is volume flow rates in capillary 2. The flow direction from left to right are taken with a positive sign and in reverse direction with a negative sign. It is assumed that the interfaces advance simultaneously in both capillaries of pore doublet.

The pressure drop across each capillary is the sum of the capillary pressure and the viscous pressure drop. Since the two capillaries are parallel, the net pressure difference between the two branch points must be the same when taken over either of the two capillaries 1 and 2.

$$\Delta P_{1} - \,P_{c1} = \Delta P_{2} - P_{c2}$$
(10.27)

And so

$$\Delta P_{c} = P_{c2} - P_{c1} = \Delta P_{2} - \Delta P_{1}$$
(10.28)

In Eq. 10.26, the capillary pressure is positive for imbibition process and negative for drainage one.

Equation (10.27) can be rearranged as:

$$\Delta P_{1} = \Delta P_{2} - \Delta P_{c}$$
(10.29)

Substitute Eqs. (10.28) into (10.25):

$$q_{w} = \frac{\pi }{8\mu L}\left( {R_{1}^{4} \Delta P_{2} - R_{1}^{4} \Delta P_{c} + R_{2}^{4} \Delta P_{2} } \right)$$
(10.30)

So Eq. (10.29) can be rearranged as:

$$q_{w} = \frac{{\pi \Delta P_{2} }}{8\mu L}\left( {R_{1}^{4} + R_{2}^{4} } \right) - \frac{{\pi R_{1}^{4} }}{8\mu L}\Delta P_{c}$$
(10.31)

Then, \(\Delta P_{2}\) can be found using Eq. (10.30).

$$\Delta P_{2} = \left( {q_{w} + \frac{{\pi R_{1}^{4} \Delta P_{c} }}{8\mu L}} \right)*\frac{8\mu L}{{\pi \left( {R_{1}^{4} + R_{2}^{4} } \right)}}$$
(10.32)

Equation (10.25) it can be rearranged as:

$$q_{1} = q_{w} - q_{2} = q_{w} - \frac{{\pi R_{2}^{4} }}{8\mu L}\Delta P_{2}$$
(10.33)

Then Eqs. (10.32) together with Eq. (10.31) results in:

$$q_{1} = q_{w} - \frac{{\pi R_{2}^{4} }}{8\mu L}*\left( {q_{w} + \frac{{\pi R_{1}^{4} \Delta P_{c} }}{8\mu L}} \right)*\frac{8\mu L}{{\pi \left( {R_{1}^{4} + R_{2}^{4} } \right)}}$$
(10.34)

Equation 10.33 can be simplified to:

$$q_{1} = q_{w} - \frac{{R_{2}^{4} }}{{\left( {R_{1}^{4} + R_{2}^{4} } \right)}}q_{w} - \left( {\frac{{\pi R_{1}^{4} R_{2}^{4} \Delta P_{c} }}{{8\mu L\left( {R_{1}^{4} + R_{2}^{4} } \right)}}} \right)\, = q_{w} \left( {\frac{{R_{1}^{4} }}{{R_{1}^{4} + R_{2}^{4} }}} \right) - \left( {\frac{{\pi R_{1}^{4} R_{2}^{4} \Delta P_{c} }}{{8\mu L\left( {R_{1}^{4} + R_{2}^{4} } \right)}}} \right)$$
(10.35)

Dividing this equation by R14 and multiplying by \(\left( {R_{1}^{4} + R_{2}^{4} } \right)\):

$$\frac{{q_{1} \left( {R_{1}^{4} + R_{2}^{4} } \right)}}{{R_{1}^{4} }} = q_{w} - \left( {\frac{{\pi R_{2}^{4} \Delta P_{c} }}{8\mu L}} \right)$$
(10.36)

So the equation of q1 and q2 are as follows:

$$q_{1} = \frac{{q_{w} - \left( {\frac{{\pi R_{2}^{4} \Delta P_{c} }}{8\mu L}} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }} = \frac{{q_{w} - \frac{{\pi R_{2}^{4} \sigma \cos \theta }}{4\mu L}\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }}$$
(10.37)
$$q_{2} = \frac{{\left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} q_{w} + \left( {\frac{{\pi R_{2}^{4} \Delta P_{c} }}{8\mu L}} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }} = \frac{{\left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} q_{w} + \frac{{\pi R_{2}^{4} \sigma \cos \theta }}{4\mu L}\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }}$$
(10.38)

Then expressions of the velocities, v1 and v2, will be obtained by dividing each flow rate by its respective cross-sectional area (\(\frac{{\pi D_{1}^{2} }}{4}\) and \(\frac{{\pi D_{2}^{2} }}{4}\)):

$$v_{1} = \frac{{q_{1} }}{{\pi R_{1}^{2} }} = \frac{{q*\frac{1}{{\pi R_{1}^{2} }} - \left( {\frac{{\pi R_{2}^{4} \Delta P_{c} }}{8\mu L}*\frac{1}{{\pi R_{1}^{2} }}} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }} = \frac{{\frac{q}{{\pi R_{1}^{2} }} - \frac{{R_{2}^{4} }}{{4\mu LR_{1}^{2} }}*\left( {\left( {\sigma \cos \theta } \right)*\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }}$$
(10.39)
$$v_{2} = \frac{{q_{2} }}{{\pi R_{2}^{2} }} = \frac{{\left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} q*\frac{1}{{\pi R_{2}^{2} }} + \left( {\frac{{\pi R_{2}^{4} \Delta P_{c} }}{8\mu L}*\frac{1}{{\pi R_{2}^{2} }}} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }} = \frac{{\frac{{R_{2}^{2} }}{{R_{1}^{4} }}*\frac{q}{\pi } + \frac{{R_{2}^{2} }}{4\mu L}*\left( {\left( {\sigma \cos \theta } \right)*\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)} \right)}}{{1 + \left( {\frac{{R_{2} }}{{R_{1} }}} \right)^{4} }}$$
(10.40)

And

So dividing these two velocity to find the ratio of velocity:

$$\frac{{v_{2} }}{{v_{1} }} = \frac{{\frac{{R_{2}^{2} }}{{R_{1}^{4} }}*\frac{q}{\pi } + \frac{{R_{2}^{2} }}{4\mu L}*\left( {\left( {\sigma \cos \theta } \right)*\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)} \right)}}{{\frac{q}{{\pi R_{1}^{2} }} - \frac{{R_{2}^{4} }}{{4\mu LR_{1}^{2} }}*\left( {\left( {\sigma \cos \theta } \right)*\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)} \right)}}$$
(10.41)

Dividing this expression by \(R_{2}^{2} \sigma \cos \theta\) and multiplying by \(4\mu LR_{1}\)

$$\frac{{v_{2} }}{{v_{1} }} = \frac{{\frac{4\mu Lq}{{\pi R_{1}^{3} \sigma \cos \theta }} + \left( {\frac{{R_{1} }}{{R_{2} }} - 1} \right)}}{{\frac{4\mu Lq}{{\pi R_{1} R_{2}^{2} \sigma \cos \theta }} - \frac{{R_{2}^{2} }}{{R_{1} }}*\left( {\frac{1}{{R_{2} }} - \frac{1}{{R_{1} }}} \right)}} = \frac{{4N_{cap} + \left( {\frac{1}{\beta } - 1} \right)}}{{\frac{{4N_{cap} }}{{\beta^{2} }} - \beta^{2} *\left( {\frac{1}{\beta } - 1} \right)}}$$
(10.42)

Finally, Eq. 10.19 can be further simplified to:

$$\frac{{v_{2} }}{{v_{1} }} = \frac{{4N_{cap} + \left( {\frac{1}{\beta } - 1} \right)}}{{\frac{{4N_{cap} }}{{\beta^{2} }} - \beta^{2} *\left( {\frac{1}{\beta } - 1} \right)}}$$
(10.43)

In which

$$N_{cap} = \frac{\mu Lq}{{\pi R_{1}^{3} \sigma \cos \theta }}$$
(10.44)

And

$$\beta = \frac{{R_{2} }}{{R_{1} }}$$
(10.45)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kazemi, F., Azin, R., Osfouri, S. (2022). Capillary Phase Trapping. In: Azin, R., Izadpanahi, A. (eds) Fundamentals and Practical Aspects of Gas Injection. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-77200-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77200-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77199-7

  • Online ISBN: 978-3-030-77200-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics