Skip to main content

A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

Monitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural Damage Detection (SDD) fields have been topics of ongoing research over the years to explore and verify different monitoring techniques and damage detection and localization procedures. In an attempt to compare performances of different methods, benchmark datasets are valuable resources since the data is made available to researchers enabling side-by-side comparisons. This paper presents a new experimental benchmark dataset generated from tests on a large-scale laboratory structure. The primary goal of the authors was to explore brand-new damage detection and quantification methodologies for efficient monitoring of structures. For this purpose, a large-scale steel grid structure with footprint dimensions of 4.2 m × 4.2 m was constructed in laboratory environment and it has been used as a test bed by the authors. The structural members of the structure are all IPE120 hot-rolled steel cross sections. The simulation of structural damage was simply loosening the bolts at one of the beam-to-girder connections, which is a slight change of rotational stiffness at the joint of the steel grid structure. The authors shared the dataset for 1 undamaged and 30 damaged conditions and published it on a public website as a new benchmark problem for structural damage detection at http://www.structuralvibration.com/benchmark/ so that other researchers can use the data and test algorithms. The authors also shared one of the damage detection tools they used, One-Dimensional Convolutional Neural Networks (1D-CNNs). The application codes, configuration files, and accompanied components of the 1D-CNNs package are available for viewers at http://www.structuralvibration.com/cnns/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agdas, D., Rice, J.A., Martinez, J.R., Lasa, I.R.: Comparison of visual inspection and structural-health monitoring as bridge condition assessment methods. J. Perform. Constr. Facil. (2016). https://doi.org/10.1061/(asce)cf.1943-5509.0000802

  2. Gattulli, V., Chiaramonte, L.: Condition assesment by visual inspection for a bridge management system. Comput. Civ. Infrastruct. Eng. (2005). https://doi.org/10.1111/j.1467-8667.2005.00379.x

  3. Živanović, S., Pavic, A., Reynolds, P.: Finite element modelling and updating of a lively footbridge: the complete process. J. Sound Vib. 301, 126–145 (2007). https://doi.org/10.1016/j.jsv.2006.09.024

    Article  Google Scholar 

  4. Zarei, J., Tajeddini, M.A., Karimi, H.R.: Vibration analysis for bearing fault detection and classification using an intelligent filter. Mechatronics. 24, 151–157 (2014). https://doi.org/10.1016/j.mechatronics.2014.01.003

    Article  Google Scholar 

  5. Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014). https://doi.org/10.1016/j.sigpro.2013.04.015

    Article  Google Scholar 

  6. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Dig. (2007). https://doi.org/10.1177/0583102406075428

  7. Pavic, A., Reynolds, P., Prichard, S., Lovell, M.: Evaluation of mathematical models for predicting walking-induced vibrations of high-frequency floors. Int. J. Struct. Stab. Dyn. 03, 107–130 (2003). https://doi.org/10.1142/S0219455403000756

    Article  MATH  Google Scholar 

  8. Pacas, M., Villwock, S., Dietrich, R.: Bearing damage detection in permanent magnet synchronous machines. In: 2009 IEEE Energy Convers. Congr. Expo., pp. 1098–1103. IEEE, New York (2009). https://doi.org/10.1109/ECCE.2009.5316091

    Chapter  Google Scholar 

  9. Mao, Z., Todd, M.D.: A Bayesian recursive framework for ball-bearing damage classification in rotating machinery. Struct. Health Monit. 15, 668–684 (2016). https://doi.org/10.1177/1475921716656123

    Article  Google Scholar 

  10. Díaz, I.M., Pereira, E., Reynolds, P.: Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures. Struct. Control Health Monit. (2012). https://doi.org/10.1002/stc.423

  11. Chen, H.-P., Ni, Y.-Q.: Structural Health Monitoring of Large Civil Engineering Structures. John Wiley & Sons, Ltd, Chichester, UK (2018). https://doi.org/10.1002/9781119166641

    Book  Google Scholar 

  12. Royvaran, M., Avci, O., Davis, B.: An overview on floor vibration serviceability evaluation methods with a large database of recorded floor data. In: Conf. Proc. Soc. Exp. Mech. Ser. (2021). https://doi.org/10.1007/978-3-030-47634-2_10

    Chapter  Google Scholar 

  13. Ngoan, D.T., Mustafa, G., Osama, A., Onur, A.: Stadium vibration assessment for serviceability considering the vibration duration. In: Proceedings, Annu. Conf. - Can. Soc. Civ. Eng. (2017)

    Google Scholar 

  14. Muhammad, Z., Reynolds, P., Avci, O., Hussein, M.: Review of pedestrian load models for vibration serviceability assessment of floor structures. Vibration. (2018). https://doi.org/10.3390/vibration2010001

  15. Chaabane, M., Ben Hamida, A., Mansouri, M., Nounou, H.N., Avci, O.: Damage detection using enhanced multivariate statistical process control technique. In: 2016 17th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2016 – Proc. (2017). https://doi.org/10.1109/STA.2016.7952052

    Chapter  Google Scholar 

  16. Celik, O., Do, N.T., Abdeljaber, O., Gul, M., Avci, O., Catbas, F.N.: Recent issues on stadium monitoring and serviceability: a review. In: Conf. Proc. Soc. Exp. Mech. Ser. (2016). https://doi.org/10.1007/978-3-319-29763-7_41

    Chapter  Google Scholar 

  17. Celik, O., Catbas, F.N., Do, N.T., Gul, M., Abdeljaber, O., Younis, A., Avci, O.: Issues, codes and basic studies for stadium dynamics. In: Proc. Second Int. Conf. Infrastruct. Manag. Assess. Rehabil. Tech., Sharjah, UAE (2016)

    Google Scholar 

  18. Catbas, F.N., Celik, O., Avci, O., Abdeljaber, O., Gul, M., Do, N.T.: Sensing and monitoring for stadium structures: a review of recent advances and a forward look. Front. Built Environ. 3, 38 (2017). https://doi.org/10.3389/fbuil.2017.00038

    Article  Google Scholar 

  19. Alabbasi, S., Hussein, M., Abdeljaber, O., Avci, O.: A numerical and experimental investigation of a special type of floating-slab tracks. Eng. Struct. (2020). https://doi.org/10.1016/j.engstruct.2020.110734

  20. Alabbasi, S., Hussein, M., Abdeljaber, O., Avci, O.: Investigating the dynamics of a special type of a floating-slab tracks. In: COMPDYN Proc. (2019). https://doi.org/10.7712/120119.6962.19626

    Chapter  Google Scholar 

  21. Carden, E.P., Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. (2004). https://doi.org/10.1177/1475921704047500

  22. Abdeljaber, O., Avci, O., Do, N.T., Gul, M., Celik, O., Necati Catbas, F.: Quantification of structural damage with self-organizing maps. Conf. Proc. Soc. Exp. Mech. Ser. (2016). https://doi.org/10.1007/978-3-319-29956-3_5

    Book  Google Scholar 

  23. Y.Y. Li, Hypersensitivity of strain-based indicators for structural damage identification: a review, Mech. Syst. Signal Process. (2010). doi:https://doi.org/10.1016/j.ymssp.2009.11.002

  24. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated square root unscented Kalman filter for state estimation - CSTR model. In: 12th Int. Multi-Conference Syst. Signals Devices, SSD 2015 (2015). https://doi.org/10.1109/SSD.2015.7348243

    Chapter  Google Scholar 

  25. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Hoboken, NJ (2012). https://doi.org/10.1002/9781118443118

    Book  Google Scholar 

  26. Quek, S.T., Tran, V.A., Hou, X.Y., Duan, W.H.: Structural damage detection using enhanced damage locating vector method with limited wireless sensors. J. Sound Vib. 328, 411–427 (2009). https://doi.org/10.1016/j.jsv.2009.08.018

    Article  Google Scholar 

  27. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civ. Struct. Health Monit. 5 (2015). https://doi.org/10.1007/s13349-015-0134-7

  28. Ghahari, S.F., Abazarsa, F., Avci, O., Çelebi, M., Taciroglu, E.: Blind identification of the Millikan Library from earthquake data considering soil-structure interaction. Struct. Control Health Monit. (2016). https://doi.org/10.1002/stc.1803

  29. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: A comparative assessment of nonlinear state estimation methods for structural health monitoring. In: Conf. Proc. Soc. Exp. Mech. Ser. (2015). https://doi.org/10.1007/978-3-319-15224-0_5

    Chapter  Google Scholar 

  30. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature. (2015). https://doi.org/10.1038/nature14541

  31. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

  32. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.: A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2020.107077

  33. Kubat, M.: An Introduction to Machine Learning. Springer, New York (2017). https://doi.org/10.1007/978-3-319-63913-0

    Book  MATH  Google Scholar 

  34. Rafiei, M.H., Adeli, H.: A novel machine learning-based algorithm to detect damage in high-rise building structures. Struct. Des. Tall Spec. Build. (2017). https://doi.org/10.1002/tal.1400

  35. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Control of plate vibrations with artificial neural networks and piezoelectricity. In: Conf. Proc. Soc. Exp. Mech. Ser. (2020). https://doi.org/10.1007/978-3-030-12676-6_26

    Chapter  Google Scholar 

  36. Abdeljaber, O., Avci, O., Inman, D.J.: Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. J. Sound Vib. 363 (2016). https://doi.org/10.1016/j.jsv.2015.10.029

  37. Avci, O., Abdeljaber, O., Kiranyaz, S.: Structural damage detection in civil engineering with machine-learning: current state of the art. In: Conf. Proc. Soc. Exp. Mech. Ser. (2021)

    Google Scholar 

  38. Avci, O., Abdeljaber, O., Kiranyaz, S.: An overview of deep learning methods used in vibration-based damage detection in civil engineering. In: Conf. Proc. Soc. Exp. Mech. Ser. (2021)

    Google Scholar 

  39. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proc. IEEE Int. Conf. Comput. Vis. (2017). https://doi.org/10.1109/ICCV.2017.89

    Chapter  Google Scholar 

  40. Milosevic, N.: Introduction to Convolutional Neural Networks. Apress, New York (2020). https://doi.org/10.1007/978-1-4842-5648-0

    Book  Google Scholar 

  41. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th Int. Conf. Mach. Learn. ICML 2019 (2019)

    Google Scholar 

  42. Niepert, M., Ahmad, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: 33rd Int. Conf. Mach. Learn. ICML 2016 (2016)

    Google Scholar 

  43. Zhang, Y., Gao, J., Zhou, H.: Breeds classification with deep convolutional neural network. In: ACM Int. Conf. Proceeding Ser. (2020). https://doi.org/10.1145/3383972.3383975

    Chapter  Google Scholar 

  44. Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D.B., Wang, Y., Iqbal, F.: Malware classification with deep convolutional neural networks. In: 2018 9th IFIP Int. Conf. New Technol. Mobil. Secur. NTMS 2018 – Proc. (2018). https://doi.org/10.1109/NTMS.2018.8328749

    Chapter  Google Scholar 

  45. Lopez Pinaya, W.H., Vieira, S., Garcia-Dias, R., Mechelli, A.: Convolutional neural networks. In: Mach. Learn. Methods Appl. to Brain Disord. (2019). https://doi.org/10.1016/B978-0-12-815739-8.00010-9

    Chapter  Google Scholar 

  46. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP 2014–2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf. (2014). https://doi.org/10.3115/v1/d14-1181

    Chapter  Google Scholar 

  47. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM. (2017). https://doi.org/10.1145/3065386

  48. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. (2016). https://doi.org/10.1109/TIE.2016.2582729

  49. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63, 664–675 (2016). https://doi.org/10.1109/TBME.2015.2468589

    Article  Google Scholar 

  50. Kiranyaz, S., Gastli, A., Ben-Brahim, L., Alemadi, N., Gabbouj, M.: Real-time fault detection and identification for MMC using 1D convolutional neural networks. IEEE Trans. Ind. Electron. (2018). https://doi.org/10.1109/TIE.2018.2833045

  51. Kiranyaz, S., Ince, T., Gabbouj, M.: Personalized monitoring and advance warning system for cardiac arrhythmias. Sci. Rep. 7 (2017). https://doi.org/10.1038/s41598-017-09544-z

  52. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017). https://doi.org/10.1016/j.jsv.2016.10.043

    Article  Google Scholar 

  53. Abdeljaber, O., Younis, A., Avci, O., Catbas, N., Gul, M., Celik, O., Zhang, H.: Dynamic testing of a laboratory stadium structure. In: Geotech. Struct. Eng. Congr. 2016 - Proc. Jt. Geotech. Struct. Eng. Congr. 2016 (2016). https://doi.org/10.1061/9780784479742.147

    Chapter  Google Scholar 

  54. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Structural damage detection in real time: implementation of 1D convolutional neural networks for SHM applications. In: Niezrecki, C. (ed.) Struct. Heal. Monit. Damage Detect. Vol. 7 Proc. 35th IMAC, A Conf. Expo. Struct. Dyn. 2017, pp. 49–54. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-54109-9_6

    Chapter  Google Scholar 

  55. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Inman, D.J.: Wireless and real-time structural damage detection: a novel decentralized method for wireless sensor networks. J. Sound Vib. (2018)

    Google Scholar 

  56. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Convolutional neural networks for real-time and wireless damage detection. In: Conf. Proc. Soc. Exp. Mech. Ser. (2020). https://doi.org/10.1007/978-3-030-12115-0_17

    Chapter  Google Scholar 

  57. Kiranyaz, S., Avci, O., Jaber, O.A.Q.A.: Real-time structural damage detection by convolutional neural networks. US16031519. https://patents.google.com/patent/US20190017911A1/en (2019)

  58. Dyke, S.J., Bernal, D., Beck, J., Ventura, C.: Experimental phase II of the structural health monitoring benchmark problem. In: Proc. 16th ASCE Eng. Mech. Conf. (2003)

    Google Scholar 

  59. Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H., Inman, D.J.: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data. Neurocomputing. (2017). https://doi.org/10.1016/j.neucom.2017.09.069

  60. Avci, O., Abdeljaber, O., Kiranyaz, M.S., Boashash, B., Sodano, H., Inman, D.J.: Efficiency validation of one dimensional convolutional neural networks for structural damage detection using a SHM benchmark data. In: 25th Int. Congr. Sound Vib. 2018, ICSV 2018 Hiroshima Call., p. 2018

    Google Scholar 

  61. Abdeljaber, O., Sassi, S., Avci, O., Kiranyaz, S., Ibrahim, A.A., Gabbouj, M.: Fault detection and severity identification of ball bearings by online condition monitoring. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2018.2886789

  62. Avci, O., Abdeljaber, O., Kiranyaz, S., Sassi, S., Ibrahim, A., Gabbouj, M.: One dimensional convolutional neural networks for real-time damage detection of rotating machinery. In: Conf. Proc. Soc. Exp. Mech. Ser. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Avci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D. (2022). A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure. In: Grimmelsman, K. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-77143-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77143-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77142-3

  • Online ISBN: 978-3-030-77143-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics