Skip to main content

Where the Local Search Affects Best in an Immune Algorithm

  • Conference paper
  • First Online:
AIxIA 2020 – Advances in Artificial Intelligence (AIxIA 2020)

Abstract

Hybrid algorithms are powerful search algorithms obtained by the combination of metaheuristics with other optimization techniques, although the most common hybridization is to apply a local solver method within evolutionary computation algorithms. In many published works in the literature, such local solver is run in different ways, sometimes acting on the perturbed elements and other on the best ones, and this raises the question of when it is best to run the local solver and on which elements it acts best in order to improve the reliability of the algorithm. Thus, three different ways of running local search in an immune algorithm have been investigated, and well-known community detection was considered as test-problem. The three methods analyzed have been assessed with respect their effect on the performances in term of quality solution found and information gained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, C., Raidl, G.R.: Hybrid Metaheuristics: Powerful Tools for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-30883-8

    Book  Google Scholar 

  2. Cutello, V., Fargetta, G., Pavone, M., Scollo, R.A.: Optimization algorithms for detection of social interactions. Algorithms 13(6), 139 (2020). https://doi.org/10.3390/a13060139

    Article  MathSciNet  Google Scholar 

  3. Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. J. Comb. Optim. 14, 9–33 (2007). https://doi.org/10.1007/s10878-006-9036-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Cutello, V., Oliva, M., Pavone, M., Scollo, R.A.: A hybrid immunological search for the weighted feedback vertex set problem. In: Matsatsinis, N.F., Marinakis, Y., Pardalos, P. (eds.) LION 2019. LNCS, vol. 11968, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38629-0_1

    Chapter  Google Scholar 

  5. Cutello, V., Oliva, M., Pavone, M., Scollo, R.A.: An immune metaheuristics for large instances of the weighted feedback vertex set problem. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1928–1936, December 2019. https://doi.org/10.1109/SSCI44817.2019.9002988

  6. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech: Theory Exp. 2005(09), P09008–P09008 (2005). https://doi.org/10.1088/1742-5468/2005/09/p09008

    Article  Google Scholar 

  7. Di Stefano, A., Vitale, A., Cutello, V., Pavone, M.: How long should offspring lifespan be in order to obtain a proper exploration? In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, December 2016. https://doi.org/10.1109/SSCI.2016.7850270

  8. Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks: algorithmic advances and experimental analysis. Inf. Sci. 260, 185–199 (2014). https://doi.org/10.1016/j.ins.2013.09.048

    Article  MathSciNet  MATH  Google Scholar 

  9. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104

    Article  Google Scholar 

  10. Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., Sharafi, S.: DENSA: an effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors. Eng. Appl. Artif. Intell. 62, 359–372 (2017). https://doi.org/10.1016/j.engappai.2016.08.014

    Article  Google Scholar 

  11. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  12. Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10), 934–938 (2008). https://doi.org/10.1002/bies.20820

    Article  Google Scholar 

  13. Hubert, L., Arabic, P.: Comparing partitions. J. Classif. 2, 193–218 (1985). https://doi.org/10.1007/BF01908075

    Article  Google Scholar 

  14. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

    Article  MATH  Google Scholar 

  15. Kullback, S.: Statistics and Information Theory. Wiley, Hoboken (1959)

    MATH  Google Scholar 

  16. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80 (2009). https://doi.org/10.1103/PhysRevE.80.016118

  17. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78 (2008). https://doi.org/10.1103/PhysRevE.78.046110

  18. Meilă, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98, 873–895 (2007). https://doi.org/10.1016/j.jmva.2006.11.013

    Article  MathSciNet  MATH  Google Scholar 

  19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69 (2004). https://doi.org/10.1103/PhysRevE.69.026113

  20. Pavone, M., Narzisi, G., Nicosia, G.: Clonal selection: an immunological algorithm for global optimization over continuous spaces. J. Glob. Optim. 53, 769–808 (2012). https://doi.org/10.1007/s10898-011-9736-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Vitale, A., Di Stefano, A., Cutello, V., Pavone, M.: The influence of age assignments on the performance of immune algorithms. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds.) UKCI 2018. AISC, vol. 840, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97982-3_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pavone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scollo, R.A., Cutello, V., Pavone, M. (2021). Where the Local Search Affects Best in an Immune Algorithm. In: Baldoni, M., Bandini, S. (eds) AIxIA 2020 – Advances in Artificial Intelligence. AIxIA 2020. Lecture Notes in Computer Science(), vol 12414. Springer, Cham. https://doi.org/10.1007/978-3-030-77091-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77091-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77090-7

  • Online ISBN: 978-3-030-77091-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics