Skip to main content

Comparison Between Manual and Automated Annotations of Eco-Acoustic Recordings Collected in Fukushima Restricted Zone

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12782)

Abstract

Since 2016, long-term ecological recordings have been conducted in the Fukushima restricted zone to monitor biodiversity. In this paper, we use the simple Dice index to compare the human annotations of bird activities with automatic bird-detection recordings. The results show strong differences with respect to the types of soundscapes. On average, human and automatic annotations matched well at sunrise. In fact, they matched better at sunrise at the start of summer than at sunset at the end of the summer. This effect may be due to the quality of the bird songs that vary with the season and time of the day. To the best of our knowledge, this is the first time that this effect has been investigated by considering the estimation of bird activities in long-term surveys of specific areas, such as the Fukushima restricted zone.

Keywords

  • Human computation
  • Eco-Acoustics
  • Fukushima exclusion zone

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-77015-0_12
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-77015-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Abe, K., Watanabe, D.: Songbirds possess the spontaneous ability to discriminate syntactic rules. Nat. Neurosci. 14(8), 1067–1074 (2011). https://doi.org/10.1038/nn.2869

    CrossRef  Google Scholar 

  2. Agency, J.M.: Japan meteorological agency: namie automated meteorological data acquisition system (2013). https://www.jma.go.jp/jp/amedas/

  3. Alexakhin, R., et al.: Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl Forum Expert group “Environment”. International Atomic Energy Agency (2006)

    Google Scholar 

  4. Bartcus, M., Chamroukhi, F., Glotin, H.: Hierarchical dirichlet process hidden Markov model for unsupervised bioacoustic analysis. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2015)

    Google Scholar 

  5. Begon, M., Harper, J., Townsend, C.: Ecology: Individuals, Populations and Communities. Blackwell Science Ltd. (December 1997)

    Google Scholar 

  6. Berwick, R.C., Chomsky, N.: Birdsong, Speech, and Language: Exploring the Evolution of Mind and Brain. MIT Press (2013)

    Google Scholar 

  7. Brady, E., Morris, M.R., Bigham, J.P.: Gauging receptiveness to social microvolunteering. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 1055–1064. ACM, New York (2015). https://doi.org/10.1145/2702123.2702329

  8. Branson, S., et al.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_32

    CrossRef  Google Scholar 

  9. Cappadonna, J.L., Brereton, M., Watson, D.M., Roe, P.: Calls from the wild: engaging citizen scientist with animal sounds. In: Proceedings of the 2016 ACM Conference Companion Publication on Designing Interactive Systems, pp. 157–160. ACM (2016)

    Google Scholar 

  10. Chomsky, N.: On certain formal properties of grammars. Inf. Control 2(2), 137–167 (1959)

    MathSciNet  CrossRef  Google Scholar 

  11. Cottman-Fields, M., Brereton, M., Roe, P.: Virtual birding: extending an environmental pastime into the virtual world for citizen science. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2029–2032. ACM (2013)

    Google Scholar 

  12. ESRI: Arcgis version 10.4.1 (2015)

    Google Scholar 

  13. Fagerlund, S.: Bird species recognition using support vector machines. EURASIP J. Appl. Sig. Process. 2007(1), 64 (2007)

    MATH  Google Scholar 

  14. Harma, A.: Automatic identification of bird species based on sinusoidal modeling of syllables. In: 2003 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2003, vol. 5, p. V-545. IEEE (2003)

    Google Scholar 

  15. Ishida, K.: Contamination of wild animals: effects on wildlife in high radioactivity areas of the agricultural and forest landscape. In: Nakanishi, T.M., Tanoi, K. (eds.) Agricultural Implications of the Fukushima Nuclear Accident, pp. 119–129. Springer, Tokyo (2013). https://doi.org/10.1007/978-4-431-54328-2_12

    CrossRef  Google Scholar 

  16. Ishida, K., Tanoi, K., Nakanishi, T.M.: Monitoring free-living Japanese Bush Warblers (Cettia diphone) in a most highly radiocontaminated area of Fukushima Prefecture. Japan. J. Radiat. Res. 56, i24–i28 (2015). https://doi.org/10.1093/jrr/rrv087

    CrossRef  Google Scholar 

  17. Kasten, E.P., Gage, S.H., Fox, J., Joo, W.: The remote environmental assessment laboratory’s acoustic library: an archive for studying soundscape ecology. Eco. Inform. 12, 50–67 (2012)

    CrossRef  Google Scholar 

  18. Kobayashi, H.H., et al.: A real-time streaming and detection system for bio-acoustic ecological studies after the Fukushima accident. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. MSA, pp. 53–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76445-0_4

    CrossRef  Google Scholar 

  19. Lasseck, M.: Large-scale identification of birds in audio recordings. In: CLEF (Working Notes), pp. 643–653 (2014)

    Google Scholar 

  20. Lin, T.H., Fang, S.H., Tsao, Y.: Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings. Sci. Rep. 7(1), 4547 (2017)

    CrossRef  Google Scholar 

  21. Poupard, M., De Montgolfier, B., Roger, V., Lohani, D., Glotin, H.: EthoAcoustics: a model based on t-SNE & clustering, applied on pantropical spotted dolphin during whale watching. In: 8th International DCLDE (Detection, Classification, Localization, and Density Estimation) Workshop (2018)

    Google Scholar 

  22. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1403–1412. ACM (2011)

    Google Scholar 

  23. Roger, V., Bartcus, M., Chamroukhi, F., Glotin, H.: Unsupervised bioacoustic segmentation by hierarchical dirichlet process hidden Markov Model. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. MSA, pp. 113–130. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76445-0_7

    CrossRef  Google Scholar 

  24. Saito, K., Nakamura, K., Ueta, M., Kurosawa, R., Fujiwara, A., Kobayashi, H.H., Nakayama, M., Toko, A., Nagahama, K.: Utilizing the Cyberforest live sound system with social media to remotely conduct woodland bird censuses in Central Japan. Ambio 44(Suppl. 4), 572–583 (2015). https://doi.org/10.1007/s13280-015-0708-y

    CrossRef  Google Scholar 

  25. Somervuo, P., Harma, A.: Bird song recognition based on syllable pair histograms. In: 2004 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2004, vol. 5, p. V-825. IEEE (2004)

    Google Scholar 

  26. Somervuo, P., Harma, A., Fagerlund, S.: Parametric representations of bird sounds for automatic species recognition. IEEE Trans. Audio Speech Lang. Process. 14(6), 2252–2263 (2006)

    CrossRef  Google Scholar 

  27. Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S.: eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142(10), 2282–2292 (2009). https://doi.org/10.1016/j.biocon.2009.05.006

    CrossRef  Google Scholar 

  28. Voida, A., Harmon, E., Al-Ani, B.: Bridging between organizations and the public: volunteer coordinators’ uneasy relationship with social computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1967–1976. ACM (2012)

    Google Scholar 

  29. Wah, C., Branson, S., Perona, P., Belongie, S.: Multiclass recognition and part localization with humans in the loop. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2524–2531. IEEE (2011)

    Google Scholar 

  30. Wang, F.Y., Carley, K.M., Zeng, D., Mao, W.: Social computing: from social informatics to social intelligence. IEEE Intell. Syst. 22(2), 79–83 (2007)

    CrossRef  Google Scholar 

  31. Wheatcroft, D., Qvarnström, A.: Genetic divergence of early song discrimination between two young songbird species. Nat. Ecol. Evol. 1(7), 192 (2017). https://www.nature.com/articles/s41559-017-0192

    CrossRef  Google Scholar 

  32. Wiggins, A., Newman, G., Stevenson, R.D., Crowston, K.: Mechanisms for data quality and validation in citizen science. In: 2011 IEEE 7th International Conference on e-Science Workshops (eScienceW), pp. 14–19. IEEE (2011)

    Google Scholar 

Download references

Acknowledgement

This study is supported by the following grants: KAKENHI Grant-in-Aid for Challenging Research (Exploratory) 19K22839, Grant-in-Aid for Scientific Research on Innovative Areas 17H05969, Grant-in-Aid for Challenging Exploratory Research 16K12666. We also thank to the Telecommunications Advancement Foundation, and the Tateisi Science and Technology Foundation Research Grant for supporting this study. We thanks the Chaire Intelligence Artificielle ADSIL ANR-20-CHIA-0014, ANR-18-CE40-0014 SMILES, MI CNRS MASTODONS SABIOD.org and EADM MADICS CNRS scaled bioacoustic research groups, and SEAMED Region Sud project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuké Shimotoku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Shimotoku, D., Kawase, J., Glotin, H., Kobayashi, H.H. (2021). Comparison Between Manual and Automated Annotations of Eco-Acoustic Recordings Collected in Fukushima Restricted Zone. In: Streitz, N., Konomi, S. (eds) Distributed, Ambient and Pervasive Interactions. HCII 2021. Lecture Notes in Computer Science(), vol 12782. Springer, Cham. https://doi.org/10.1007/978-3-030-77015-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77015-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77014-3

  • Online ISBN: 978-3-030-77015-0

  • eBook Packages: Computer ScienceComputer Science (R0)