Skip to main content

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12734)


We investigate three particular instances of the marking coverability problem in ordinary, safe Petri nets: the Dead Places Problem, the Dead Transitions Problem, and the Concurrent Places Problem. To address these three problems, which are of practical interest, although not yet supported by mainstream Petri net tools, we propose a combination of static and dynamic algorithms. We implemented these algorithms and applied them to a large collection of 13,000+ Petri nets obtained from realistic systems—including all the safe benchmarks of the Model Checking Contest. Experimental results show that 95% of the problems can be solved in a few minutes using the proposed approaches.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-76983-3_17
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-76983-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)


  1. 1.

    \(\sqsubseteq \) is reflexive, antisymmetric, transitive, and \(u_0\) is the greatest element of U for \(\sqsubseteq \).

  2. 2.

  3. 3.

  4. 4. (when invoked with “-pnml” option) and

  5. 5. (see compression/decompression).

  6. 6.

  7. 7.


  1. Amparore, E., et al.: Presentation of the 9th edition of the Model Checking Contest. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 50–68. Springer, Cham (2019).

    CrossRef  Google Scholar 

  2. Bouvier, P., Garavel, H., Ponce-de-León, H.: Automatic decomposition of Petri nets into automata networks – a synthetic account. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 3–23. Springer, Cham (2020).

    CrossRef  Google Scholar 

  3. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets. Theoret. Comput. Sci. 147(1–2), 117–136 (1995)

    MathSciNet  CrossRef  Google Scholar 

  4. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  5. Garavel, H.: Nested-unit Petri nets. J. Logical Algebraic Methods Program. 104, 60–85 (2019)

    MathSciNet  CrossRef  Google Scholar 

  6. Garavel, H.: Proposal for Adding Useful Features to Petri-Net Model Checkers, December 2020.

  7. Garavel, H., Serwe, W.: State space reduction for process algebra specifications. Theoret. Comput. Sci. 351(2), 131–145 (2006)

    MathSciNet  CrossRef  Google Scholar 

  8. ISO/IEC: High-level Petri Nets - Part 2: Transfer Format. International Standard 15909–2:2011, International Organization for Standardization, Geneva (2011)

    Google Scholar 

  9. Janicki, R.: Nets, sequential components and concurrency relations. Theoret. Comput. Sci. 29, 87–121 (1984)

    MathSciNet  CrossRef  Google Scholar 

  10. Kovalyov, A.: Concurrency relations and the safety problem for Petri nets. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 299–309. Springer, Heidelberg (1992).

    CrossRef  Google Scholar 

  11. Kovalyov, A.: A polynomial algorithm to compute the concurrency relation of a regular STG. In: Yakovlev, A., Gomes, L., Lavagno, L. (eds.) Hardware Design and Petri Nets, chap. 6, pp. 107–126. Springer, Boston, MA, USA, January 2000.

  12. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of free-choice signal transition graphs. In: Proceedings of the 3rd Workshop on Discrete Event Systems (WODES 1996), Edinburgh, Scotland, UK, pp. 1–6 (1996)

    Google Scholar 

  13. Murata, T.: Petri nets: analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    CrossRef  Google Scholar 

  14. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).

    CrossRef  Google Scholar 

  15. Semenov, A., Yakovlev, A.: Combining partial orders and symbolic traversal for efficient verification of asynchronous circuits. In: Ohtsuki, T., Johnson, S. (eds.) Proceedings of the 12th International Conference on Computer Hardware Description Languages and their Applications (CHDL 1995), Makuhari, Chiba, Japan. IEEE (1995)

    Google Scholar 

  16. Wiśniewski, R., Karatkevich, A., Adamski, M., Kur, D.: Application of comparability graphs in decomposition of Petri nets. In: Proceedings of the 7th International Conference on Human System Interactions (HSI 2014), Costa da Caparica, Portugal. IEEE (2014)

    Google Scholar 

Download references


The experiments of Sect. 5.6 have been performed using the French Grid’5000 testbed.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Pierre Bouvier or Hubert Garavel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bouvier, P., Garavel, H. (2021). Efficient Algorithms for Three Reachability Problems in Safe Petri Nets. In: Buchs, D., Carmona, J. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2021. Lecture Notes in Computer Science(), vol 12734. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76982-6

  • Online ISBN: 978-3-030-76983-3

  • eBook Packages: Computer ScienceComputer Science (R0)