Abstract
This expository article is a compilation of universal algebraic prerequisites and tools for the analysis of non-classical logics, with particular (but not exclusive) reference to substructural logics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
There, for a given \(\mathsf {V}\), the term on the right of the displayed inclusion in (5) can be replaced by a \(\wedge ,\circ \) term; cf. the proof of [81, Theorem 4.7]. Further characterizations of the varieties in Theorem 12.5 are provided in [81], one of which is the satisfaction of a nontrivial congruence equation in the infinitary language of meet-continuous lattices.
References
Bacsich, P. D. (1972). Injectivity in model theory. Colloquium Mathematicum, 25, 165–176.
Baker, K. A. (1977). Finite equational bases for finite algebras in a congruence-distributive equational class. Advances in Mathematics, 24, 207–243.
Baker, K. A., McNulty, G., & Wang, J. (2005). An extension of Willard’s finite basis theorem: congruence meet-semidistributive varieties of finite critical depth. Algebra Universalis, 54, 289–302.
Baker, K. A., & Wang, J. (2002). Definable principal subcongruences. Algebra Universalis, 47, 145–151.
Baldwin, J. T., & Berman, J. (1975). The number of subdirectly irreducible algebras in a variety. Algebra Universalis, 5, 379–389.
Barto, L. (2015). The constraint satisfaction problem and universal algebra. The Bulletin of Symbolic Logic, 21, 319–337.
Belohlavek, R. (2000). On the regularity of MV-algebras and Wajsberg hoops. Algebra Universalis, 44, 375–377.
Bergman, C. (2012). Universal Algebra. Fundamentals and Selected Topics. CRC Press: Taylor & Francis.
Bergman, C., & McKenzie, R. (1990). Minimal varieties and quasivarieties. Journal of the Australian Mathematical Society. Series A, 48, 133–147.
(1980). Algebraic properties of k–valued logics. In Proceedings of the Tenth International Symposium on Multiple-Valued Logic (pp. 195–204). Illinois: Evanston.
Berman, J., & Idziak, P. M. (2005). ‘Generative Complexity in Algebra’, Memoirs of the American Mathematical Society 828. Providence: Amer. Math. Soc.
Birkhoff, G. (1935). On the structure of abstract algebras. Proceedings of the Cambridge, 29, 433–454.
Birkhoff, G. (1944). Subdirect unions in universal algebra. American Mathematical Society, 50, 764–768.
Blok, W. J. (1978). On the Degree of Incompleteness of Modal Logics and the Covering Relation in the Lattice of Modal Logics, Technical Report 78–08. Department of Mathematics: University of Amsterdam.
Blok, W. J. (1980). The lattice of modal logics: An algebraic investigation. The Journal of Symbolic Logic, 45, 221–236.
Blok, W. J., & Ferreirim, I. M. A. (2000). On the structure of hoops. Algebra Universalis, 43, 233–257.
Blok, W. J., & Hoogland, E. (2006). The Beth property in algebraic logic. Studia Logica, 83, 49–90.
Blok, W. J., Köhler, P., & Pigozzi, D. (1984). On the structure of varieties with equationally definable principal congruences II. Algebra Universalis, 18, 334–379.
Blok, W. J., & Pigozzi, D. (1982). On the structure of varieties with equationally definable principal congruences I. Algebra Universalis, 15, 195–227.
Blok, W. J., & Pigozzi, D. (1986). A finite basis theorem for quasivarieties. Algebra Universalis, 22, 1–13.
Blok, W. J., & Pigozzi, D. (1989). ‘Algebraizable Logics’, Memoirs of the American Mathematical Society 396. Providence: Amer. Math. Soc.
Blok, W. J., & Pigozzi, D. Abstract Algebraic Logic and the Deduction Theorem, manuscript, 1997. [See http://orion.math.iastate.edu/dpigozzi/ for updated version, 2001.]
Blok, W. J., & van Alten, C. J. (2002). The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Universalis, 48, 253–271.
Burris, S., & McKenzie, R. (1981). ‘Decidability and Boolean Representations’, Memoirs of the American Mathematical Society 246. Providence: Amer. Math. Soc.
Burris, S., & Sankappanavar, H. P. (1981). A Course in Universal Algebra., Graduate Texts in Mathematics New York: Springer.
Campercholi, M. A., & Raftery, J. G. (2017). Relative congruence formulas and decompositions in quasivarieties. Algebra Universalis, 78, 407–425.
Chang, C. C., Jónsson, B., & Tarski, A. (1964). Refinement properties for relational structures. Fundamenta Mathematicae, 55, 249–281.
Chang, C. C., & Keisler, J. (1990). Model Theory (3rd ed., Vol. 73)., Studies in Logic and the Foundations of Mathematics Amsterdam: North-Holland Publishing Co.
Cohn, P. M. (1965). Universal algebra. New York: Harper & Row.
Csákany, B. (1970). Characterizations of regular varieties. Acta Scientiarum Mathematicarum (Szeged), 31, 187–189.
Czelakowski, J. (2001). Protoalgebraic Logics. Dordrecht: Kluwer.
Czelakowski, J., & Dziobiak, W. (1990). Congruence distributive quasivarieties whose finitely subdirectly irreducible members form a universal class. Algebra Universalis, 27, 128–149.
Czelakowski, J., & Pigozzi, D. (1999). Amalgamation and interpolation in abstract algebraic logic. In X. Caicedo & C. H. Montenegro (Eds.), ‘Models, Algebras and Proofs’ (vol. 203, pp. 187–265)., Lecture Notes in Pure and Applied Mathematics New York: Marcel Dekker.
B. Davey, H. Werner, Dualities and equivalences for varieties of algebras, ‘Contributions to Lattice Theory’ (Proc. Conf. Szeged, 1980), Coll. Math. Soc. János Bolyai 33, North Holland, pp. 101–275.
Day, A. (1969). A characterization of modularity for congruence lattices of algebras. Canadian Mathematical Bulletin, 12, 167–173.
Day, A. (1971). A note on the congruence extension property. Algebra Universalis, 1, 234–235.
Day, A., & Freese, R. (1980). A characterization of identities implying congruence modularity. Canadian Journal of Mathematics, 32, 1140–1167.
Dziobiak, W., Maroti, M., McKenzie, R., & Nurakunov, A. (2009). The weak extension property and finite axiomatizability for quasivarieties. Fundamenta Mathematicae, 202, 199–223.
Evans, T. (1969). Some connections between residual finiteness, finite embeddability and the word problem. Journal of the London Mathematical Society, 2, 399–403.
Fichtner, K. (1968). Varieties of universal algebras with ideals (Russian). Mathematics Sbornik, 75(117), 445–453.
Fichtner, K. (1970). Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsch. d. deutsch. Akad. d. Wiss. (Berlin), 12, 21–25.
Fleischer, I. (1955). A note on subdirect products. Acta Mathematica Academiae Scientiarum Hungaricae, 6, 463–465.
Font, J. M. (2016). ‘Abstract Algebraic Logic—An Introductory Textbook’, Studies in Logic 60. London: College Publications.
Font, J. M., Jansana, R., & Pigozzi, D. (2003). A survey of abstract algebraic logic. Studia Logica, 74, 13–97; Updated (2009) 91, 125–130.
Foster, A. L. (1953). Generalized & “Boolean” theory of universal algebras II. Mathematische Zeitschrift, 59, 191–199.
Foster, A. L., & Pixley, A. F. (1964). Semi-categorical algebras I. Mathematische Zeitschrift, 83, 147–169.
Foster, A. L., & Pixley, A. F. (1964). Semi-categorical algebras II. Mathematische Zeitschrift, 85, 169–184.
Fraser, G. A., & Horn, A. (1970). Congruence relations in direct products. Proceedings of the American Mathematical Society, 26, 390–394.
Freese, R., & McKenzie, R. (1981). Residually small varieties with modular congruence lattices. Transactions of the American Mathematical Society, 264, 419–430.
R. Freese, R. McKenzie, ‘Commutator Theory for Congruence Modular Varieties’, London Math. Soc. Lecture Note Ser., No. 125, Cambridge Univ. Press, 1987.
Freese, R., & Nation, J. B. (1973). Congruence lattices of semilattices. Pacific Journal of Mathematics, 49, 51–58.
Fried, E., Grätzer, G., & Quackenbush, R. (1980). Uniform congruence schemes. Algebra Universalis, 10, 176–189.
Fried, E., & Kiss, E. W. (1983). Connections between congruence-lattices and polynomial properties. Algebra Universalis, 17, 227–262.
Gabbay, D. M., & Maksimova, L. (2005). ‘Interpolation and Definability: Modal and Intuitionistic Logics’, Oxford Logic Guides (Vol. 46). Oxford: Clarendon Press.
Galatos, N. (2004). Equational bases for joins of residuated-lattice varieties. Studia Logica, 76, 227–240.
Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices. An Algebraic Glimpse at Substructural Logics’, Studies in Logic and the Foundations of Mathematics (Vol. 151). Elsevier.
Galatos, N., & Raftery, J. G. (2012). A category equivalence for odd Sugihara monoids and its applications. Journal of Pure and Applied Algebra, 216, 2177–2192.
Gorbunov, V. A. (1998). Algebraic Theory of Quasivarieties. New York: Consultants Bureau.
Grätzer, G. (1979). Universal Algebra (2nd ed.). New York: Springer.
Gratzer, G., & Lakser, H. (1971). The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation. Transactions of the American Mathematical Society, 156, 343–358.
Grätzer, G., & Lakser, H. (1973). A note on the implicational class generated by a class of structures. Canadian Mathematical Bulletin, 16, 603–605.
Gumm, H.-P. (1983). ‘Geometrical Methods in Congruence Modular Algebras’, Memoirs of the American Mathematical Society 286. Providence: Amer. Math. Soc.
Hagemann, J. (1973). On regular and weakly regular congruences, Preprint No. 75, Technische Hochschule Darmstadt.
Hagemann, J., & Herrmann, C. (1979). A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity. Archiv der Mathematik (Basel), 32, 234–245.
Hagemann, J., & Mitschke, A. (1973). On n-permutable congruences. Algebra Universalis, 3, 8–12.
Harrop, R. (1958). On the existence of finite models and decision procedures for propositional calculi. Mathematical Proceedings of the Cambridge Philosophical Society, 54, 1–13.
Herrmann, C. (1979). Affine algebras in congruence modular varieties. Acta Scientiarum Mathematicarum (Szeged), 41, 119–125.
Hobby, D., & McKenzie, R. (1988). ‘The Structure of Finite Algebras’, Contemporary Mathematics 76, American Mathematical Society. RI: Providence.
Hu, T. K. (1969). Stone duality for primal algebra theory. Mathematische Zeitschrift, 110, 180–198.
Idziak, P. M., McKenzie, R., & Valeriote, M. (2009). The structure of locally finite varieties with polynomially many models. Journal of the American Mathematical Society, 22, 119–165.
Idziak, P. M., Słomczyńska, K., & Wroński, A. (2009). Fregean varieties. International Journal of Algebra and Computation, 19, 595–645.
Jankov, V. A. (1963). The relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures. Soviet Mathematics Doklady, 4, 1203–1204.
Jónsson, B. (1953). On the representation of lattices. Mathematica Scandinavica, 1, 193–206.
Jónsson, B. (1967). Algebras whose congruence lattices are distributive. Mathematica Scandinavica, 21, 110–121.
Jónsson, B. (1979). On finitely based varieties of algebras. Colloquium Mathematicum, 42, 255–261.
Jónsson, B. (1980). Congruence varieties. Algebra Universalis, 10, 355–394.
Jónsson, B. (1995). Congruence distributive varieties. Mathematica Japonica, 42, 353–401.
Kaarli, K., & Pixley, A. F. (2001). Polynomial Completeness in Algebraic Systems. Boca Raton FL: Chapman & Hall/CRC.
Kearnes, K. A. (1989). The relationship between AP, RS and CEP. Proceedings of the American Mathematical Society, 105, 827–839.
Kearnes, K. A. (1993). An order-theoretic property of the commutator. International Journal of Algebra and Computation, 3, 491–533.
Kearnes, K. A., & Kiss, E. W. (2013). The shape of congruence lattices. Memoirs of the American Mathematical Society, 222(1046). Amer. Math. Soc., Providence.
Kearnes, K. A., Markovic, P., & McKenzie, R. (2014). Optimal strong Mal’cev conditions for omitting type 1 in locally finite varieties. Algebra Universalis, 72, 91–100.
Kearnes, K. A., & Szendrei, A. (1998). The relationship between two commutators. International Journal of Algebra and Computation, 8, 497–531.
Kearnes, K. A., Szendrei, A., & Willard, R. (2016). A finite basis theorem for difference-term varieties with a finite residual bound. Transactions of the American Mathematical Society, 368, 2115–2143.
Kearnes, K. A., & Willard, R. (1999). Residually finite, congruence meet-semidistributive varieties of finite type have a finite residual bound. Proceedings of the American Mathematical Society, 127, 2841–2850.
Keisler, H. J. (1961). Ultraproducts of elementary classes. Indagationes Mathematicae, 23, 477–495.
Kihara, H., & Ono, H. (2010). Interpolation properties, Beth definability properties and amalgamation properties for substructural logics. Journal of Logic and Computation, 20, 823–875.
Kiss, E. W. (1985). Injectivity in modular varieties I. Two commutator properties. Bulletin of the Australian Mathematical Society, 32, 33–44.
Kiss, E. W. (1985). Injectivity in modular varieties II. The congruence extension property. Bulletin of the Australian Mathematical Society, 32, 45–53.
Kogalevskiĭ, S. R. (1965). On Birkhoff’s Theorem (Russian). Uspekhi Matematicheskikh Nauk, 20, 206–207.
Köhler, P., & Pigozzi, D. (1980). Varieties with equationally definable principal congruences. Algebra Universalis, 11, 213–219.
Kozik, M., Krokhin, A., Valeriote, M., & Willard, R. (2015). Characterizations of several Maltsev conditions. Algebra Universalis, 73, 205–224.
Lipparini, P. (1995). n-Permutable varieties satisfy nontrivial congruence identities. Algebra Universalis, 33, 159–168.
Lipparini, P. (1998). A characterization of varieties with a difference term, II: Neutral = meet semidistributive. Canadian Mathematical Bulletin, 41, 1318–327.
Lipparini, P. (2008). Every \(m\)-permutable variety satisfies the congruence identity \(\alpha \beta _h=\alpha \gamma _h\). Proceedings of the American Mathematical Society, 136, 1137–1144.
Litak, T. (2008). Stability of the Blok Theorem. Algebra Universalis, 58, 385–411.
Łoś, J. (1955). Quelqur remarques théorèmes et problèmes sur les classes définissables d’algèbras, ‘Mathematical Interpretations of Formal Systems’, Amsterdam, pp. 98–113.
Lyndon, R. C. (1951). Identities in two-valued calculi. Transactions of the American Mathematical Society, 71, 457–465.
Lyndon, R. C. (1954). Identities in finite algebras. Proceedings of the American Mathematical Society, 5, 8–9.
Maddux, R. (2006). Relation Algebras’, Studies in Logic and the Foundations of Mathematics (Vol. 150). Elsevier.
Magari, R. (1969). Una dimonstrazione del fatto che ogni varietà ammette algebre semplici. Annali dellUniversità di Ferrara, Sez. VII (N.S.), 14, 1–4.
Magari, R. (1969). Varietà a quozienti filtrali. Annali dellUniversità di Ferrara, Sez. VII (N.S.), 14, 5–20.
Maltsev, A. I. (1954). On the general theory of algebraic systems (Russian). Matematicheskii Sbornik (N.S.), 35, 3–20.
Maltsev, A. I. (1966). Several remarks on quasivarieties of algebraic systems. Algebra i Logika, 5, 3–9.
Marchioni, E., & Metcalfe, G. (2012). Craig interpolation for semilinear substructural logics. Mathematical Logic Quarterly, 58, 468–481.
Maroti, M. (2002). The variety generated by tournaments, Ph.D. Dissertation, Vanderbilt University, Nashville.
Maroti, M., & McKenzie, R. (2004). Finite basis problems and results for quasivarieties. Studia Logica, 78, 293–320.
McKenzie, R. (1972). Equational bases for non-modular lattice varieties. Transactions of the American Mathematical Society, 174, 1–43.
McKenzie, R. (1978). Para-primal varieties: A study of finite axiomatizability and definable principal congruences in locally finite varieties. Algebra Universalis, 8, 336–348.
McKenzie, R. (1982). Narrowness implies uniformity. Algebra Universalis, 15, 67–85.
McKenzie, R. (1987). Finite equational bases for congruence modular varieties. Algebra Universalis, 24, 224–250.
McKenzie, R. (1996). The residual bounds of finite algebras. International Journal of Algebra and Computation, 6, 1–28.
McKenzie, R. (1996). Tarski’s Finite Basis Problem is undecidable. International Journal of Algebra and Computation, 6, 49–104.
McKenzie, R. (1996). An algebraic version of categorical equivalence for varieties and more general algebraic categories. In A. Ursini & P. Aglianò (Eds.), Logic and Algebra (Vol. 180, pp. 211–243)., Lecture Notes in Pure and Applied Mathematics New York: Marcel Dekker.
McKenzie, R., McNulty, G., & Taylor, W. (1987). Algebras, Lattices, Varieties (Vol. 1). Belmont, CA: Wadsworth & Brooks/Cole.
McKenzie, R. (1989). ‘The Structure of Decidable Locally Finite Varieties’, Progress in Mathematics (Vol. 79). Birkhäuser.
Metcalfe, G., Montagna, F., & Tsinakis, C. (2014). Amalgamation and interpolation in ordered algebras. Journal of Algebra, 402, 21–82.
Moraschini, T., Raftery, J. G., Wannenburg, J. J. (2018). Epimorphisms, Definability and Cardinalities. manuscript.
Murskiĭ, V. L. (1965). The existence in the three-valued logic of a closed class with a finite basis having no finite complete system of identities. Doklady Akademii Nauk SSSR, 163, 815–818.
Neumann, W. D. (1974). On Mal’cev conditions. Journal of the Australian Mathematical Society, 17, 376–384.
Nurakunov, A. (1990). Quasivarieties of algebras with definable principal congruences. Algebra and Logic, 29, 26–34.
Nurakunov, A. (2001). Quasi-identities of congruence-distributive quasivarieties of algebras. Siberian Mathematical Journal, 42, 108–118.
Okada, M., & Terui, K. (1999). The finite model property for various fragments of intuitionistic linear logic. Journal of Symbolic Logic, 64, 790–802.
Ono, H., & Komori, Y. (1985). Logics without the contraction rule. Journal of Symbolic Logic, 50, 169–202.
Park, R. E. (1976). Equational Classes of Non-associative Ordered Systems, Ph.D. dissertation, UCLA.
Pigozzi, D. (1988). Finite basis theorems for relatively congruence-distributive quasivarieties. Transactions of the American Mathematical Society, 310, 499–533.
Pixley, A. F. (1963). Distributivity and permutability of congruence relations in equational classes of algebras. Proceedings of the American Mathematical Society, 14, 105–109.
Pixley, A. F. (1972). Local Mal’cev conditions. Canadian Mathematical Bulletin, 15, 559–568.
Quackenbush, R. (1971/1972). Equational classes generated by finite algebras. Algebra Universalis, 1, 265–266.
Raftery, J. G. (1994). Ideal determined varieties need not be congruence \(3\)- permutable. Algebra Universalis, 31, 293–297.
Raftery, J. G. (2013). Inconsistency lemmas in algebraic logic. Mathematical Logic Quarterly, 59, 393–406.
Rautenberg, W. (1980). Splitting lattices of logics. Archiv für Mathematische Logik, 20, 155–159.
Rautenberg, W., Wolter, F., & Zakharyaschev, M. (2006). Willem Blok and modal logic. Studia Logica, 83, 15–30.
Selman, A. (1972). Completeness of calculi for axiomatically defined classes of algebras. Algebra Universalis, 2, 20–32.
Shelah, S. (1971). Every two elementarily equivalent models have isomorphic ultrapowers. Israel Journal of Mathematics, 10, 224–233.
Siggers, M. H. (2010). A strong Mal’cev condition for locally finite varieties omitting the unary type. Algebra Universalis, 64, 15–20.
Smith, J. D. H. (1976). Mal’cev Varieties. Lecture Notes in Math (Vol. 554). Berlin: Springer-Verlag.
Tarski, A. (1946). A remark on functionally free algebras. Annals of Mathematics, 47, 163–165.
Taylor, W. (1972). Residually small varieties. Algebra Universalis, 2, 33–53.
Taylor, W. (1973). Characterizing Mal’cev conditions. Algebra Universalis, 3, 351–397.
Taylor, W. (1976). Pure compactifications in quasi-primal varieties. Canadian Journal of Mathematics, 28, 50–62.
Taylor, W. (1977). Varieties obeying homotopy laws. Canadian Journal of Mathematics, 29, 498–527.
Valeriote, M., & Willard, R. (2014). Idempotent \(n\)-permutable varieties. Bulletin of the London Mathematical Society, 46, 870–880.
van Alten, C. J. (2005). The finite model property for knotted extensions of propositional linear logic. Journal of Symbolic Logic, 70, 84–98.
van Alten, C. J., & Raftery, J. G. (2004). Rule separation and embedding theorems for logics without weakening. Studia Logica, 76, 241–274.
Whitehead, A. N. (1898). A Treatise on Universal Algebra. Press: Cambridge Univ.
Whitman, P. (1943). Splittings of a lattice. American Journal of Mathematics, 65, 179–196.
Willard, R. (2000). A finite basis theorem for residually finite, congruence meet-semidistributive varieties. Journal of Symbolic Logic, 65, 187–200.
Wille, R. (1970). “Kongruenzklassengeometrien”, Springer Lecture Notes No. 113.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Raftery, J.G. (2022). Universal Algebraic Methods for Non-classical Logics. In: Galatos, N., Terui, K. (eds) Hiroakira Ono on Substructural Logics. Outstanding Contributions to Logic, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-76920-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-76920-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76919-2
Online ISBN: 978-3-030-76920-8
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)