Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography–mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 2-AA:
-
2-aminobenzoic acid (anthranilic acid)
- 2-AB:
-
2-aminobenzamide (anthranilamide)
- 2-AP:
-
2-aminopyridine
- 4-HCCA:
-
α-cyano-4-hydroxycinnamic acid
- Abs:
-
Antibodies
- ACN:
-
Acetonitrile
- ANTS:
-
8-aminonaphthalene-1,3,6-trisulfonate
- APS-PEG:
-
Aminopropylsilane-polyethylene glycol
- APTS:
-
8-aminopyrene-1,3,6-trisulfonate
- CE:
-
Capillary electrophoresis
- CEC:
-
Capillary electrochromatography
- CE–LIF:
-
Capillary electrophoresis with laser-induced fluorescence detection
- CE–MS:
-
Capillary electrophoresis coupled to mass spectrometry
- CFG:
-
Consortium for Functional Glycomics
- CGE:
-
Capillary gel electrophoresis
- CID:
-
Collision-induced dissociation
- CIEF:
-
Capillary isoelectric focusing
- Cl-CCA:
-
4-chloro-α-cyanocinnamic acid
- CNBr:
-
Cyanogen bromide
- CZE:
-
Capillary zone electrophoresis
- DHB:
-
2,5-dihydroxybenzoic acid (gentisic acid)
- DTT:
-
Dithiothreitol
- EACA:
-
ε-aminocaproic acid
- ECD:
-
Electron capture dissociation
- EDC:
-
1-ethyl-3(−3-dimethylaminopropyl) carbodiimide hydrochloride
- EDTA:
-
Ethylenediaminetetraacetic acid
- ESI:
-
Electrospray ionization
- ESI–MS:
-
Electrospray ionization mass spectrometry
- ETD:
-
Electron transfer dissociation
- EThcD:
-
Electron transfer/higher energy collision dissociation
- Fab:
-
Fragment antigen-binding
- FASP:
-
Filter-aided sample preparation
- Fc:
-
Fragment crystallizable
- Fmoc-Cl:
-
Fluorenylmethoxycarbonyl chloride
- FT-ICR:
-
Fourier-transform ion cyclotron resonance
- GlcNAc:
-
N-acetylglucosamine
- HCD:
-
Higher-energy collision dissociation
- HILIC:
-
Hydrophilic interaction liquid chromatography
- HILIC–SPE:
-
Solid-phase extraction using hydrophilic interaction liquid chromatography
- HILIC–UPLC–FLR:
-
Hydrophilic interaction ultraperformance liquid chromatography with fluorescence detection
- HOBt:
-
1-hydroxybenzotriazole
- HPAEC:
-
High-pH anion exchange chromatography
- IAA:
-
Iodoacetamide
- IgE:
-
Immunoglobulin E
- IgG:
-
Immunoglobulin G
- IgM:
-
Immunoglobulin M
- Igs:
-
Immunoglobulins
- IM-MS:
-
Ion mobility-mass spectrometry
- ISD:
-
In-source decay
- ITP:
-
Isotachophoresis
- K a :
-
Equilibrium association constant
- LC–MS:
-
Liquid chromatography coupled with mass spectrometry
- LDI:
-
Laser desorption ionization
- m/z:
-
Mass-to-charge ratio
- mAbs:
-
Monoclonal antibodies
- MALDI:
-
Matrix-assisted laser desorption/ionization
- MALDI–MS:
-
MALDI coupled with mass spectrometry
- MALDI-TOF–MS:
-
MALDI coupled with time-of-flight mass spectrometry
- MECC/MEKC:
-
Micellar electrokinetic capillary chromatography
- MEEKC:
-
Microemulsion electrokinetic chromatography
- MRM:
-
Multiple reaction monitoring
- MS:
-
Mass spectrometry
- MS/MS:
-
Tandem mass spectrometry
- NACE:
-
Nonaqueous capillary electrophoresis
- nano-LC:
-
Nano-liquid chromatography
- Neu5Gc:
-
N-glycolylneuraminic acid
- NP-HPLC:
-
Normal-phase high-performance liquid chromatography
- pAbs:
-
Polyclonal antibodies
- PGC:
-
Porous graphitized carbon
- PGC-LC:
-
Porous graphitized carbon liquid chromatography
- PMP:
-
1-phenyl-3-methyl-5-pyrazolone
- PNGase F:
-
Peptide:N-glycosidase F
- PpL:
-
Protein L
- ProA:
-
Procainamide
- PTM:
-
Posttranslational modification
- Q-TOF:
-
Quadrupole time-of-flight
- RP:
-
Reversed-phase
- RP-LC:
-
Reversed-phase liquid chromatography
- SpA:
-
Protein A
- SpG:
-
Protein G
- TETA:
-
Triethylenetetramine
- TFA:
-
Trifluoroacetic acid
- TMT:
-
Tandem mass tag
- TOF:
-
Time-of-flight
- UPLC®:
-
Ultra performance liquid chromatography
- (U)HPLC–FLR–MS:
-
(ultra)high-performance liquid chromatography with fluorescence detection coupled to mass spectrometry
- ZIC-HILIC:
-
Zwitterionic hydrophilic liquid interaction chromatography
References
Abrahams JL, Campbell MP, Packer NH (2018) Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 35:15–29
Adamczyk B, Tharmalingam-Jaikaran T, Schomberg M, Szekrényes Á, Kelly RM, Karlsson NG, Guttman A, Rudd PM (2014) Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr Res 389:174–185
Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207
Alagesan K, Khilji SK, Kolarich D (2017) It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 409:529–538
Albrecht S, Mittermayr S, Smith J, Martín SM, Doherty M, Bones J (2017) Twoplex 12/13C6 aniline stable isotope and linkage-specific sialic acid labeling 2D-LC-MS workflow for quantitative N-glycomics. Proteomics 17:1600304
Alley WR, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23:161–170
Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196
Amano M, Nishimura S-I (2010) Large-scale glycomics for discovering cancer-associated N-glycans by integrating glycoblotting and mass spectrometry. Methods Enzymol 478:109–125
An HJ, Lebrilla CB (2011) Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (tutorial). Mass Spectrom Rev 30:560–578
Angel PM, Lim J-M, Wells L, Bergmann C, Orlando R (2007) A potential pitfall in 18O-based N-linked glycosylation site mapping. Rapid Commun Mass Spectrom 21:674–682
Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50
Ashline DJ, Lapadula AJ, Liu Y-H, Lin M, Grace M, Pramanik B, Reinhold VN (2007) Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 79:3830–3842
Atwood JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R (2008) Quantitation by isobaric labeling: applications to glycomics. J Proteome Res 7:367–374
Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, Baessmann C, Wagner-Rousset E, Suckau D, Beck A (2013) Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. mAbs 5:699–710
Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC (2005) A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B Anal Technol Biomed Life Sci 826:177–187
Bapiro TE, Richards FM, Jodrell DI (2016) Understanding the complexity of porous graphitic carbon (PGC) chromatography: modulation of mobile-stationary phase interactions overcomes loss of retention and reduces variability. Anal Chem 88:6190–6194
Bi C, Yuan Y, Tu Y, Wu J, Liang Y, Li Y, He X, Chen L, Zhang Y (2020) Facile synthesis of hydrophilic magnetic graphene nanocomposites via dopamine self-polymerization and Michael addition for selective enrichment of N-linked glycopeptides. Sci Rep 10:71. https://doi.org/10.1038/s41598-019-56944-4
Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238
Bindila L, Peter-Katalinić J, Zamfir A (2005) Sheathless reverse-polarity capillary electrophoresis-electrospray-mass spectrometry for analysis of underivatized glycoconjugates. Electrophoresis 26:1488–1499
Bodnar ED, Perreault H (2015) Synthesis and evaluation of carboxymethyl chitosan for glycopeptide enrichment. Anal Chim Acta 891:179–189
Bodnar J, Szekrenyes A, Szigeti M, Jarvas G, Krenkova J, Foret F, Guttman A (2016) Enzymatic removal of N-glycans by PNGase F coated magnetic microparticles. Electrophoresis 37:1264–1269
Boesl U (2017) Time-of-flight mass spectrometry: introduction to the basics. Mass Spectrom Rev 36:86–109
Bondt A, Rombouts Y, Selman MHJ, Hensbergen PJ, Reiding KR, Hazes JMW, Dolhain RJEM, Wuhrer M (2014) Immunoglobulin G (IgG) fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics 13:3029–3039
Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem 402:231–247
Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622
Bynum MA, Yin H, Felts K, Lee YM, Monell CR, Killeen K (2009) Characterization of IgG N-glycans employing a microfluidic chip that integrates glycan cleavage, sample purification, LC separation, and MS detection. Anal Chem 81:8818–8825
Carrasco B, Garcia De La Torre J, Davis KG, Jones S, Athwal D, Walters C, Burton DR, Harding SE (2001) Crystallohydrodynamics for solving the hydration problem for multi-domain proteins: open physiological conformations for human IgG. Biophys Chem 93:181–196
Cataldi TRI, Campa C, De Benedetto GE (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing. Fresenius J Anal Chem 368:739–758
Chen X, Flynn GC (2007) Analysis of N-glycans from recombinant immunoglobulin G by on-line reversed-phase high-performance liquid chromatography/mass spectrometry. Anal Biochem 370:147–161
Chen C-C, Su W-C, Huang B-Y, Chen Y-J, Tai H-C, Obena RP (2014) Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 139:688–704
Chen Y, Sheng Q, Hong Y, Lan M (2019) Hydrophilic nanocomposite functionalized by carrageenan for the specific enrichment of glycopeptides. Anal Chem 91:4047–4054
Chen SW, Tan D, Yang YS, Zhang W (2020) Investigation of the effect of salt additives in Protein L affinity chromatography for the purification of tandem single-chain variable fragment bispecific antibodies. MAbs 12(1):1718440. https://doi.org/10.1080/19420862.2020.1718440
Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865
Choe W, Durgannavar TA, Chung SJ (2016) Fc-binding ligands of immunoglobulin G: an overview of high affinity proteins and peptides. Materials 9:994
Collin M, Olsén A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055
Conboy JJ, Henion JD (1992) The determination of glycopeptides by liquid chromatography/mass spectrometry with collision-induced dissociation. J Am Soc Mass Spectrom 3:804–814
Cook KS, Bullock K, Sullivan T (2012) Development and qualification of an antibody rapid deglycosylation method. Biologicals 40:109–117
Costello CE, Contado-Miller JM, Cipollo JF (2007) A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 18:1799–1812
Dard P, Lefranc MP, Osipova L, Sanchez-Mazas A (2001) DNA sequence variability of IGHG3 alleles associated to the main G3m haplotypes in human populations. Eur J Hum Genet 9:765–772
De Haan N, Reiding KR, Haberger M, Reusch D, Falck D, Wuhrer M (2015) Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem 87:8284–8291
de Haan N, Falck D, Wuhrer M (2020) Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 30:226–240
de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137
Demelbauer UM, Zehl M, Plematl A, Allmaier G, Rizzi A (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18:1575–1582
Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409
Dwek RA, Edge CJ, Harvey DJ, Wormald MR, Parekh RB (1993) Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem 62:65–100
Eliuk S, Makarov A (2015) Evolution of orbitrap mass spectrometry instrumentation. Annu Rev Anal Chem (Palo Alto Calif) 8:61–80
Eriksson A, Norgren M (2003) Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect Immun 71:211–217
Everest-Dass AV, Abrahams JL, Kolarich D, Packer NH, Campbell MP (2013) Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J Am Soc Mass Spectrom 24:895–906
Faccio G (2018) From protein features to sensing surfaces. Sensors (Basel) 18(4):1204. https://doi.org/10.3390/s18041204
Fahnestock SR, Alexander P, Nagle J, Filpula D (1986) Gene for an immunoglobulin-binding protein from a group G streptococcus. J Bacteriol 167:870–880
Faid V, Leblanc Y, Bihoreau N, Chevreux G (2018) Middle-up analysis of monoclonal antibodies after combined IgdE and IdeS hinge proteolysis: investigation of free sulfhydryls. J Pharm Biomed Anal 149:541–546
Falck D, Jansen BC, Plomp R, Reusch D, Haberger M, Wuhrer M (2015) Glycoforms of immunoglobulin G based biopharmaceuticals are differentially cleaved by trypsin due to the glycoform influence on higher-order structure. J Proteome Res 14:4019–4028
Fan JQ, Kondo A, Kato I, Lee YC (1994) High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal Biochem 219:224–229
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science (New York, NY) 246:64–71
Formolo T, Heckert A, Phinney KW (2014) Analysis of deamidation artifacts induced by microwave-assisted tryptic digestion of a monoclonal antibody. Anal Bioanal Chem 406:6587–6598
Gebrehiwot AG, Melka DS, Kassaye YM, Gemechu T, Lako W, Hinou H, Nishimura S-I (2019) Exploring serum and immunoglobulin G N-glycome as diagnostic biomarkers for early detection of breast cancer in Ethiopian women. BMC Cancer 19:588
Gennaro LA, Salas-Solano O (2008) On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 80:3838–3845
Gennaro LA, Salas-Solano O, Ma S (2006) Capillary electrophoresis-mass spectrometry as a characterization tool for therapeutic proteins. Anal Biochem 355:249–258
Gevaert K, Impens F, Ghesquière B, Van Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–4885
Ghitescu L, Galis Z, Bendayan M (1991) Protein AG-gold complex: an alternative probe in immunocytochemistry. J Histochem Cytochem 39:1057–1065
Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat Protoc 11:993–1006
Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271
Gil G-C, Iliff B, Cerny R, Velander WH, Van Cott KE (2010) High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time of flight mass spectrometry. Anal Chem 82:6613–6620
Goh JB, Ng SK (2018) Impact of host cell line choice on glycan profile. Crit Rev Biotechnol 38:851–867
Gong B, Hoyt E, Lynaugh H, Burnina I, Moore R, Thompson A, Li H (2013) N-glycosylamine-mediated isotope labeling for mass spectrometry-based quantitative analysis of N-linked glycans. Anal Bioanal Chem 405:5825–5831
Goso Y (2016) Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins. Anal Biochem 496:35–42
Griffiths J (2008) A brief history of mass spectrometry. Anal Chem 80:5678–5683
Gross JH (2004) Mass spectrometry. A textbook. Springer, Berlin
Gudelj I, Lauc G, Pezer M (2018) Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 333:65–79
Haag AM (2016) Mass analyzers and mass spectrometers. Adv Exp Med Biol 919:157–169
Habazin S, Novokmet M, Štambuk J, Razdorov G, Keser T, Lauc G (2019) A sweet glimpse of rat immunoglobulin G glycosylation: towards comprehensive rodent animal model glyco(proteo)mics. Glycoconj J 36:267–397
Harazono A, Kawasaki N, Itoh S, Hashii N, Matsuishi-Nakajima Y, Kawanishi T, Yamaguchi T (2008) Simultaneous glycosylation analysis of human serum glycoproteins by high-performance liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 869:20–30
Harvey DJ (1996) Identification of cleaved oligosaccharides by matrix-assisted laser desorption/ionization. In: Methods in molecular biology. Humana Press, Totowa, pp 243–253
Harvey DJ (2000) N-(2-diethylamino)ethyl-4-aminobenzamide derivative for high sensitivity mass spectrometric detection and structure determination of N-linked carbohydrates. Rapid Commun Mass Spectrom 14:862–871
Harvey DJ (2001) Identification of protein-bound carbohydrates by mass spectrometry. Proteomics 1:311–328
Harvey DJ (2020) Negative ion mass spectrometry for the analysis of N-linked glycans. Mass Spectrom Rev 39:586–679. https://doi.org/10.1002/mas.21622
Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM (2002) “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem 74:734–740
Harvey DJ, Royle L, Radcliffe CM, Rudd PM, Dwek RA (2008) Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal Biochem 376:44–60
Hemström P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821
Hernandez-Alba O, Wagner-Rousset E, Beck A, Cianférani S (2018) Native mass spectrometry, ion mobility, and collision-induced unfolding for conformational characterization of IgG4 monoclonal antibodies. Anal Chem 90:8865–8872
Higel F, Demelbauer U, Seidl A, Friess W, Sörgel F (2013) Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem 405:2481–2493
Higel F, Seidl A, Demelbauer U, Sörgel F, Frieß W (2014) Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins. mAbs 6:894–903
Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U, Pengelley S, Jabs W, Seeberger PH, Silva DV, Wuhrer M, Kolarich D (2016) The art of destruction: optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J Am Soc Mass Spectrom 27:507–519
Hirayama K, Yuji R, Yamada N, Kato K, Arata Y, Shimada I (1998) Complete and rapid peptide and glycopeptide mapping of mouse monoclonal antibody by LC/MS/MS using ion trap mass spectrometry. Anal Chem 70:2718–2725
Holland M, Yagi H, Takahashi N, Kato K, Savage COS, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta Gen Subj 1760:669–677
Hong Y, Zhao H, Pu C, Zhan Q, Sheng Q, Lan M (2018) Hydrophilic phytic acid-coated magnetic graphene for titanium(IV) immobilization as a novel hydrophilic interaction liquid chromatography–immobilized metal affinity chromatography platform for glyco- and phosphopeptide enrichment with controllable selectivity. Anal Chem 90:11008–11,015
Hsu F-F, Turk J (2004) Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. J Am Soc Mass Spectrom 15:536–546
Hu Y, Mechref Y (2012) Comparing MALDI-MS, RP-LC-MALDI-MS and RP-LC-ESI-MS glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum. Electrophoresis 33:1768–1777
Huang Y, Orlando R (2017) Kinetics of N-Glycan release from human immunoglobulin G (IgG) by PNGase F: all glycans are not created equal. J Biomol Tech 28:150–157
Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77:1432–1439
Huang J, Guerrero A, Parker E, Strum JS, Smilowitz JT, German JB, Lebrilla CB (2015) Site-specific glycosylation of secretory immunoglobulin a from human colostrum. J Proteome Res 14:1335–1349
Huang C, Liu Y, Wu H, Sun D, Li Y (2017) Characterization of IgG glycosylation in rheumatoid arthritis patients by MALDI-TOF-MSn and capillary electrophoresis. Anal Bioanal Chem 409:3731–3739
Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884
Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M (2009) IgG glycosylation analysis. Proteomics 9:882–913
Hülsmeier AJ, Tobler M, Burda P, Hennet T (2016) Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease. Sci Rep 6:33927. https://doi.org/10.1038/srep33927
Janin-Bussat MC, Tonini L, Huillet C, Colas O, Klinguer-Hamour C, Corvaïa N, Beck A (2013) Cetuximab fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol Biol 988:93–113
Jansen BC, Reiding KR, Bondt A, Hipgrave Ederveen AL, Palmblad M, Falck D, Wuhrer M (2015) MassyTools: a high-throughput targeted data processing tool for relative quantitation and quality control developed for glycomic and glycoproteomic MALDI-MS. J Proteome Res 14:5088–5098
Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, Chen DDY (2014) Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface. Anal Chem 86:6479–6486
Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10(12):M111.009910. https://doi.org/10.1074/mcp.M111.009910
Jeong YR, Kim SY, Park YS, Lee GM (2018) Simple and robust N-glycan analysis based on improved 2-aminobenzoic acid labeling for recombinant therapeutic glycoproteins. J Pharm Sci 107:1831–1841
Jooß K, Sommer J, Bunz SC, Neusüß C (2014) In-line SPE-CE using a fritless bead string design-Application for the analysis of organic sulfonates including inline SPE-CE-MS for APTS-labeled glycans. Electrophoresis 35:1236–1243
Jooß K, Meckelmann SW, Klein J, Schmitz OJ, Neusüß C (2019) Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans. Anal Bioanal Chem 411:6255–6264
Kamerling JP, Gerwig GJ (2007) 2.01—Strategies for the structural analysis of carbohydrates. In: Kamerling H (ed) Comprehensive glycoscience. Elsevier, Oxford, pp 1–68
Kameyama A, Dissanayake SK, Thet Tin WW (2018) Rapid chemical de-N-glycosylation and derivatization for liquid chromatography of immunoglobulin N-linked glycans. PLoS One 13(5):e0196800. https://doi.org/10.1371/journal.pone.0196800
Kang P, Mechref Y, Klouckova I, Novotny MV (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 19:3421–3428
Kang P, Mechref Y, Kyselova Z, Goetz JA, Novotny MV (2007) Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal Chem 79:6064–6073
Kanje S, Venskutonytė R, Scheffel J, Nilvebrant J, Lindkvist-Petersson K, Hober S (2018) Protein engineering allows for mild affinity-based elution of therapeutic antibodies. J Mol Biol 430(18 Pt B):3427–3438. https://doi.org/10.1016/j.jmb.2018.06.004
Kannicht C, Grunow D, Lucka L (2019) Enzymatic sequence analysis of N-glycans by exoglycosidase cleavage and mass spectrometry: detection of lewis X structures. Methods Mol Biol 1934:51–64
Karas M, Krüger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–440
Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366:669–676
Karav S, Cohen JL, Barile D, de Moura BJMLN (2017) Recent advances in immobilization strategies for glycosidases. Biotechnol Prog 33:104–112
Keser T, Pavić T, Lauc G, Gornik O (2018) Comparison of 2-aminobenzamide, procainamide and RapiFluor-MS as derivatizing agents for high-throughput HILIC-UPLC-FLR-MS N-glycan analysis. Front Chem 6:324
Kihlberg B-M, Sjöholm AG, Björck L, Sjöbring U (1996) Characterization of the binding properties of protein LG, an immunoglobulin-binding hybrid protein. Eur J Biochem 240:556–563
Kim M-S, Pandey A (2012) Electron transfer dissociation mass spectrometry in proteomics. Proteomics 12:530–542
Kobata A (2008) The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 1780:472–478
Koguma I, Yamashita S, Sato S, Okuyama K, Katakura Y (2013) Novel purification method of human immunoglobulin by using a thermo-responsive protein A. J Chromatogr A 1305:149–153
Korodi M, Rákosi K, Baibarac M, Fejer SN (2020) Reusable on-plate immunoprecipitation method with covalently immobilized antibodies on a protein G covered microtiter plate. J Immunol Methods 483:112812
Kotsias M, Blanas A, van Vliet SJ, Pirro M, Spencer DIR, Kozak RP (2019) Method comparison for N-glycan profiling: towards the standardization of glycoanalytical technologies for cell line analysis. PLoS One 14(10):e0223270. https://doi.org/10.1371/journal.pone.0223270
Kováčik V, Hirsch J, Kováč P, Heerma W, Thomas-Oates J, Haverkamp J (1995) Oligosaccharide characterization using collision-induced dissociation fast atom bombardment mass spectrometry: evidence for internal monosaccharide residue loss. J Mass Spectrom 30:949–958
Kozak RP, Royle L, Gardner RA, Bondt A, Fernandes DL, Wuhrer M (2014) Improved nonreductive O-glycan release by hydrazinolysis with ethylenediaminetetraacetic acid addition. Anal Biochem 453:29–37
Krenkova J, Szekrenyes A, Keresztessy Z, Foret F, Guttman A (2013) Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. J Chromatogr A 1322:54–61
Kruljec N, Bratkovič T (2017) Alternative affinity ligands for immunoglobulins. Bioconjug Chem 28:2009–2030
Kurogochi M, Amano J (2014) Relative quantitation of glycopeptides based on stable isotope labeling using MALDI-TOF MS. Molecules 19:9944–9961
Lakhrif Z, Pugnière M, Henriquet C, di Tommaso A, Dimier-Poisson I, Billiald P, Juste MO, Aubrey N (2016) A method to confer Protein L binding ability to any antibody fragment. MAbs 8:379–388
Lannergård J, Guss B (2006) IdeE, an IgG-endopeptidase of Streptococcus equi ssp. equi. FEMS Microbiol Lett 262:230–235
Lauber MA, Yu Y-Q, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ (2015) Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem 87:5401–5409
Lermyte F, Tsybin YO, O’Connor PB, Loo JA (2019) Top or middle? Up or down? Toward a standard lexicon for protein top-down and allied mass spectrometry approaches. J Am Soc Mass Spectrom 30:1149–1157
Liu S, Gao W, Wang Y, He Z, Feng X, Liu B-F, Liu X (2017) Comprehensive N-glycan profiling of cetuximab biosimilar candidate by NP-HPLC and MALDI-MS. PLos One 12:e0170013
Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M (2019a) Protein A- and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta 194:664–672
Liu L, Jin S, Mei P, Zhou P (2019b) Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides. Talanta 203:58–64
Loos A, Gruber C, Altmann F, Mehofer U, Hensel F, Grandits M, Oostenbrink C, Stadlmayr G, Furtmüller PG, Steinkellner H (2014) Expression and glycoengineering of functionally active heteromultimeric IgM in plants. Proc Natl Acad Sci U S A 111:6263–6268
López-Fernández H, Santos HM, Capelo JL, Fdez-Riverola F, Glez-Peña D, Reboiro-Jato M (2015) Mass-Up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinformatics 16:318
Luo Q, Rejtar T, Wu SL, Karger BL (2009) Hydrophilic interaction 10 μm I.D. porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography-mass spectrometry. J Chromatogr A 1216:1223–1231
Maher S, Jjunju FP, Taylor S (2015) Colloquium: 100 years of mass spectrometry: perspectives and future trends. Rev Mod Phys 87:113
Maier M, Reusch D, Bruggink C, Bulau P, Wuhrer M, Mølhøj M (2016) Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N -glycans from heterogeneously glycosylated IgGs. J Chromatogr B 1033–1034:342–352
Matsumoto A, Shikata K, Takeuchi F, Kojima N, Mizuochi T (2000) Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J Biochem 128:621–628
Mauko L, Nordborg A, Hutchinson JP, Lacher NA, Hilder EF, Haddad PR (2011) Glycan profiling of monoclonal antibodies using zwitterionic-type hydrophilic interaction chromatography coupled with electrospray ionization mass spectrometry detection. Anal Biochem 408:235–241
Mauko L, Lacher NA, Pelzing M, Nordborg A, Haddad PR, Hilder EF (2012) Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies. J Chromatogr B Anal Technol Biomed Life Sci 911:93–104
Melmer M, Stangler T, Premstaller A, Lindner W (2011) Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A 1218:118–123
Mendez-Huergo SP, Maller SM, Farez MF, Mariño K, Correale J, Rabinovich GA (2014) Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev 25:247–255
Menni C, Keser T, Mangino M et al (2013) Glycosylation of immunoglobulin g: role of genetic and epigenetic influences. PLoS One 8:e82558
Michael C, Rizzi AM (2015) Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase. J Chromatogr A 1383:88–95
Miller PE, Denton MB (1986) The quadrupole mass filter: basic operating concepts. J Chem Educ 63:617
Miura Y, Endo T (2016) Glycomics and glycoproteomics focused on aging and age-related diseases—glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta Gen Subj 1860:1608–1614
Miura Y, Hato M, Shinohara Y et al (2008) BlotGlycoABC™, an integrated glycoblotting technique for rapid and large scale clinical glycomics. Mol Cell Proteomics 7(2):370–377. https://doi.org/10.1074/MCP.M700377-MCP200
Morelle W, Slomianny M-C, Diemer H, Schaeffer C, van Dorsselaer A, Michalski J-C (2004) Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom 18:2637–2649
Moser AC, Hage DS (2010) Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis 2:769–790
Mouratou B, Béhar G, Pecorari F (2015) Artificial affinity proteins as ligands of immunoglobulins. Biomolecules 5:60–75
Nakakita S, Sumiyoshi W, Miyanishi N, Hirabayashi J (2007) A practical approach to N-glycan production by hydrazinolysis using hydrazine monohydrate. Biochem Biophys Res Commun 362:639–645
Nakano M, Higo D, Arai E, Nakagawa T, Kakehi K, Taniguchi N, Kondo A (2009) Capillary electrophoresis-electrospray ionization mass spectrometry for rapid and sensitive N-glycan analysis of glycoproteins as 9-fluorenylmethyl derivatives. Glycobiology 19:135–143
Nikolaev EN, Jertz R, Grigoryev A, Baykut G (2012) Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7 T. Anal Chem 84:2275–2283
Nilson BH, Solomon A, Björck L, Akerström B (1992) Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267:2234–2239
Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlén M (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113
Nishimura S-I (2011) Toward automated glycan analysis. Adv Carbohydr Chem Biochem 65:219–271
Nolting D, Malek R, Makarov A (2019) Ion traps in modern mass spectrometry. Mass Spectrom Rev 38:150–168
Ohta Y, Kameda K, Matsumoto M, Kawasaki N (2017) Rapid glycopeptide enrichment using cellulose hydrophilic interaction/reversed-phase stagetips. Mass Spectrom 6:A0061–A0061
Olivova P, Chen W, Chakraborty AB, Gebler JC (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40
Pabst M, Altmann F (2008a) LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Chem 80:7534–7542
Pabst M, Altmann F (2008b) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542
Pabst M, Kolarich D, Pöltl G, Dalik T, Lubec G, Hofinger A, Altmann F (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384:263–273
Pabst TM, Palmgren R, Forss A, Vasic J, Fonseca M, Thompson C, Wang WK, Wang X, Hunter AK (2014) Engineering of novel Staphylococcal Protein A ligands to enable milder elution pH and high dynamic binding capacity. J Chromatogr A 1362:180–185
Pabst M, Benešová I, Fagerer SR et al (2016) Differential isotope labeling of glycopeptides for accurate determination of differences in site-specific glycosylation. J Proteome Res 15:326–331
Page M, Thorpe R (2002) Purification of IgG by precipitation with sodium sulfate or ammonium sulfate. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, NJ, pp 983–984
Paul M, Reljic R, Klein K et al (2014) Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. mAbs 6:1585–1597
Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I, Koeleman CAM, Deelder AM, Wuhrer M (2014) Site-specific N-glycosylation analysis of human immunoglobulin e. J Proteome Res 13:536–546
Pučić M, Knežević A, Vidič J et al (2011) High throughput isolation and glycosylation analysis of IgG–variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10(10):M111.010090. https://doi.org/10.1074/mcp.M111.010090
Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q (2007) Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzy. Anal Biochem 364:8–18
Ramirez K, Campbell E, Han S-Y, Buehler J, Phan T, Young Yoon H, Lee YL, Suresh T, Sulchek T (2019) Optimization of microparticle reagents to collect and detect antibody. Langmuir 35:11717–11,724
Ramos II, Marques SS, Magalhães LM, Barreiros L, Reis S, Lima JLFC, Segundo MA (2019) Assessment of immunoglobulin capture in immobilized protein A through automatic bead injection. Talanta 204:542–547
Redman EA, Batz NG, Mellors JS, Ramsey JM (2015) Integrated microfluidic capillary electrophoresis-electrospray ionization devices with online ms detection for the separation and characterization of intact monoclonal antibody variants. Anal Chem 87:2264–2272
Rehder DS, Dillon TM, Pipes GD, Bondarenko PV (2006) Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A 1102:164–175
Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793
Reusch D, Haberger M, Kailich T, Heidenreich A-K, Kampe M, Bulau P, Wuhrer M (2014) High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs 6:185–196
Reusch D, Haberger M, Falck D et al (2015a) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-part 2: mass spectrometric methods. mAbs 7:732–742
Reusch D, Haberger M, Maier B et al (2015b) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles—part 1: separation-based methods. mAbs 7:167–179
Rispens T, Vidarsson G (2014) Human IgG subclasses. In: Antibody Fc. Elsevier, Amsterdam, pp 159–177
Ritamo I, Räbinä J, Natunen S, Valmu L (2013) Nanoscale reversed-phase liquid chromatography–mass spectrometry of permethylated N-glycans. Anal Bioanal Chem 405:2469–2480
Rodrigo G, Gruvegård M, Van Alstine JM (2015) Antibody fragments and their purification by protein L affinity chromatography. Antibodies 4:259–277
Roy R, Ang E, Komatsu E, Domalaon R, Bosseboeuf A, Harb J, Hermouet S, Krokhin O, Schweizer F, Perreault H (2018) Absolute quantitation of glycoforms of two human IgG subclasses using synthetic Fc peptides and glycopeptides. J Am Soc Mass Spectrom 29:1086–1098
Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 304:70–90
Rudd PM, Colominas C, Royle L, Murphy N, Hart E, Merry AH, Hebestreit HF, Dwek RA (2001) A high-performance liquid chromatography based strategy for rapid, sensitive sequencing ofN-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 1:285–294
Ruhaak LR, Deelder AM, Wuhrer M (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem 394:163–174
Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010a) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397:3457–3481
Ruhaak LR, Steenvoorden E, Koeleman CAM, Deelder AM, Wuhrer M (2010b) 2-picoline-borane: a non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics 10:2330–2336
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB (2018) Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev 118:7886–7930
Saba JA, Kunkel JP, Jan DCH, Ens WE, Standing KG, Butler M, Jamieson JC, Perreault H (2002) A study of immunoglobulin g glycosylation in monoclonal and polyclonal species by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 305:16–31
Sajid MS, Jabeen F, Hussain D, Gardner QA, Ashiq MN, Najam-ul-Haq M (2020) Boronic acid functionalized fibrous cellulose for the selective enrichment of glycopeptides. J Sep Sci 43:1348–1355
Saldova R, Asadi Shehni A, Haakensen VD, Steinfeld I, Hilliard M, Kifer I, Helland Å, Yakhini Z, Børresen-Dale AL, Rudd PM (2014) Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J Proteome Res 13:2314–2327
Salimi K, Usta DD, Koçer İ, Çelik E, Tuncel A (2018) Protein A and protein A/G coupled magnetic SiO2 microspheres for affinity purification of immunoglobulin G. Int J Biol Macromol 111:178–185
Sauer-Eriksson AE, Kleywegt GJ, Uhlén M, Jones TA (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3:265–278
Selman MHJ, Hemayatkar M, Deelder AM, Wuhrer M (2011) Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem 83:2492–2499
Selman MHJ, Derks RJE, Bondt A, Palmblad M, Schoenmaker B, Koeleman CAM, van de Geijn FE, Dolhain RJEM, Deelder AM, Wuhrer M (2012a) Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteome 75:1318–1329
Selman MHJ, Hoffmann M, Zauner G, McDonnell LA, Balog CIA, Rapp E, Deelder AM, Wuhrer M (2012b) MALDI-TOF-MS analysis of sialylated glycans and glycopeptides using 4-chloro-α-cyanocinnamic acid matrix. Proteomics 12:1337–1348
Sénard T, Gargano AFG, Falck D, de Taeye SW, Rispens T, Vidarsson G, Wuhrer M, Somsen GW, Domínguez-Vega E (2020) MS-based allotype-specific analysis of polyclonal IgG-Fc N-glycosylation. Front Immunol 11:2049. https://doi.org/10.3389/fimmu.2020.02049
Sha Q, Wu Y, Wang C, Sun B, Zhang Z, Zhang L, Lin Y, Liu X (2018) Cellulose microspheres-filled pipet tips for purification and enrichment of glycans and glycopeptides. J Chromatogr A 1569:8–16
Sheng S, Kong F (2012) Separation of antigens and antibodies by immunoaffinity chromatography. Pharm Biol 50:1038–1044
Shiang Y-C, Lin C-A, Huang C-C, Chang H-T (2011) Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma. Analyst 136:1177–1182
Shiao J-Y, Chang Y-T, Chang M-C, Chen MX, Liu L-W, Wang X-Y, Tsai Y-J, Kuo T-C, Tsai I-L (2020) Development of efficient on-bead protein elution process coupled to ultra-high performance liquid chromatography–tandem mass spectrometry to determine immunoglobulin G subclass and glycosylation for discovery of bio-signatures in pancreatic disease. J Chromatogr A 1621:461039
Shou WZ, Naidong W (2005) Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phases in the hydrophilic interaction chromatography-electrospray tandem mass spectrometric (HILIC-ESI/MS/MS) bioanalysis of basic compounds. J Chromatogr B Anal Technol Biomed Life Sci 825:186–192
Shubhakar A, Kozak RP, Reiding KR, Royle L, Spencer DIR, Fernandes DL, Wuhrer M (2016) Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal Chem 88:8562–8569
Singh C, Zampronio CG, Creese AJ, Cooper HJ (2012) Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res 11:4517–4525
Sinha S, Pipes G, Topp EM, Bondarenko PV, Treuheit MJ, Gadgil HS (2008) Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs. J Am Soc Mass Spectrom 19:1643–1654
Sjögren J, Struwe WB, Cosgrave EFJ, Rudd PM, Stervander M, Allhorn M, Hollands A, Nizet V, Collin M (2013) EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem J 455:107
Sjögren J, Cosgrave EFJ, Allhorn M, Nordgren M, Björk S, Olsson F, Fredriksson S, Collin M (2015) EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans. Glycobiology 25:1053–1063
Sjögren J, Olsson F, Beck A (2016) Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 141:3114–3125
Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899
Sobott F, Watt SJ, Smith J, Edelmann MJ, Kramer HB, Kessler BM (2009) Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J Am Soc Mass Spectrom 20:1652–1659
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD (2016) Oxidative release of natural glycans for functional glycomics. Nat Methods 13:528–534
Spoerry C, Seele J, Valentin-Weigand P, Baums CG, von Pawel-Rammingen U (2016) Identification and characterization of IgdE, a novel IgG-degrading protease of Streptococcus suis with unique specificity for porcine IgG. J Biol Chem 291:7915–7925
Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871
Stadlmann J, Pabst M, Altmann F (2010) Analytical and functional aspects of antibody sialylation. J Clin Immunol 30(Suppl 1):S15–S19
Stanley P, Taniguchi N, Aebi M (2017) N-Glycans. In: Varki A, Cummings RD, Esko JD Essentials of glycobiology [Internet]. 3rd. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press
Steffen U, Koeleman CA, Sokolova MV et al (2020) IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 11(1):120. https://doi.org/10.1038/s41467-019-13992-8
Sun G, Yu X, Bao C, Wang L, Li M, Gan J, Qu D, Ma J, Chen L (2015) Identification and characterization of a novel prokaryotic peptide N-glycosidase from Elizabethkingia meningoseptica. J Biol Chem 290:7452–7462
Svensson HG, Wedemeyer WJ, Ekstrom JL, Callender DR, Kortemme T, Kim DE, Sjöbring U, Baker D (2004) Contributions of amino acid side chains to the kinetics and thermodynamics of the bivalent binding of protein L to Ig kappa light chain. Biochemistry 43:2445–2457
Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533
Szabo Z, Guttman A, Karger BL (2010) Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem 82:2588–2593
Szigeti M, Bondar J, Gjerde D, Keresztessy Z, Szekrenyes A, Guttman A (2016) Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns. J Chromatogr B Analyt Technol Biomed Life Sci 1032:139–143
Takakura D, Harazono A, Hashii N, Kawasaki N (2014) Selective glycopeptide profiling by acetone enrichment and LC/MS. J Proteome 101:17–30
Takayama M (2016) MALDI in-source decay of protein: the mechanism of c-Ion formation. Mass Spectrom (Tokyo) 5(1):A0044. https://doi.org/10.5702/massspectrometry.A0044
Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura SI (2006) Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A 1113:177–181
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904
Tian Y, Han L, Buckner AC, Ruotolo BT (2015) Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal Chem 87:11509–11,515
Tissot B, North SJ, Ceroni A, Pang PC, Panico M, Rosati F, Capone A, Haslam SM, Dell A, Morris HR (2009) Glycoproteomics: past, present and future. FEBS Lett 583:1728–1735
Todoroki K, Mizuno H, Sugiyama E, Toyo’oka T (2020) Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: a review of recent advances and future perspectives. J Pharm Biomed Anal 179:112991
Tong X, Li T, Orwenyo J, Toonstra C, Wang L-X (2018) One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes. Bioorg Med Chem 26:1347–1355
Tran BQ, Barton C, Feng J et al (2016) Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. J Proteome 134:93–101
Trang HK, Marcus RK (2017) Application of protein A-modified capillary-channeled polymer polypropylene fibers to the quantitation of IgG in complex matrices. J Pharm Biomed Anal 142:49–58
Trastoy B, Klontz E, Orwenyo J, Marina A, Wang L-X, Sundberg EJ, Guerin ME (2018) Structural basis for the recognition of complex-type N-glycans by Endoglycosidase S. Nat Commun 9:1874
Vainauskas S, Kirk CH, Petralia L et al (2018) A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes. Sci Rep 8(1):9504. https://doi.org/10.1038/s41598-018-27797-0
van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y (2016) The emerging importance of IgG Fab glycosylation in immunity. J Immunol 196:1435–1441
Varki A, Cummings RD, Esko JD et al (eds) (2015) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y (2017) Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38:2100–2114
Vestal ML, Campbell JM (2005) Tandem time-of-flight mass spectrometry. Methods Enzymol 402:79–108
Vilaj M, Lauc G, Trbojević-Akmačić I (2020) Evaluation of different PNGase F enzymes in immunoglobulin G and total plasma N-glycans analysis. Glycobiology. https://doi.org/10.1093/glycob/cwaa047
Vincents B, Guentsch A, Kostolowska D, von Pawel-Rammingen U, Eick S, Potempa J, Abrahamson M (2011) Cleavage of IgG1 and IgG3 by gingipain K from Porphyromonas gingivalis may compromise host defense in progressive periodontitis. FASEB J 25:3741–3750
Volpi N, Maccari F (2013) Capillary Electrophoresis of Biomolecules. Human Press, Springer Science+Business Media
von Pawel-Rammingen U, Johansson BP, Björck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21:1607–1615
Vreeker GCM, Wuhrer M (2017) Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 409:359–378
Wang T, Voglmeir J (2014) PNGases as valuable tools in glycoprotein analysis. Protein Pept Lett 21:976–985
Wang T, Cai ZP, Gu XQ, Ma HY, Du YM, Huang K, Voglmeir J, Liu L (2014) Discovery and characterization of a novel extremely acidic bacterial N-glycanase with combined advantages of PNGase F and A. Biosci Rep 34(6):e00149. https://doi.org/10.1042/BSR20140148
Wang C, Qiang S, Jin W, Song X, Zhang Y, Huang L, Wang Z (2018a) Reductive chemical release of N-glycans as 1-amino-alditols and subsequent 9-fluorenylmethyloxycarbonyl labeling for MS and LC/MS analysis. J Proteome 187:47–58
Wang C, Yang M, Gao X, Li C, Zou Z, Han J, Huang L, Wang Z (2018b) The ammonia-catalyzed release of glycoprotein N-glycans. Glycoconj J 35:411–420
Weng Y, Qu Y, Jiang H, Wu Q, Zhang L, Yuan H, Zhou Y, Zhang X, Zhang Y (2014) An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling. Anal Chim Acta 833:1–8
West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217:3201–3216
Wuhrer M, Deelder AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 825:124–133
Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM (2006) Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom 20:1747–1754
Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007a) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128
Wuhrer M, Stam JC, van de Geijn FE, Koeleman CAMM, Verrips CT, Dolhain RJEMEM, Hokke CH, Deelder AM (2007b) Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7:4070–4081
Wuhrer M, De Boer AR, Deelder AM (2009) Structural glycomics using Hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28:192–206
Yan X, Tchekhovskoi D, Mirokhin Y, Stein S, Kilpatrick L (2012) Optimization of tryptic digestion methods for LC-MS/MS analysis of chimeric immunoglobulin G. J Biomol Tech 23:S44
Yang L, Biswas ME, Chen P (2003) Study of binding between protein A and immunoglobulin G using a surface tension probe. Biophys J 84:509–522
Yang Z, Sun A, Zhao X et al (2020) Preparation and application of a beta-d-glucan microsphere conjugated protein A/G. Int J Biol Macromol 151:878–884
Yost RA, Enke CG (1979) Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem 51:1251–1264
Zaia J (2010) Mass spectrometry and glycomics. Omics 14:401–418
Zaia J (2013) Capillary electrophoresis-mass spectrometry of carbohydrates. In: Methods in molecular biology. Humana Press, Totowa, NJ, pp 139–151
Zauner G, Selman MHJ, Bondt A, Rombouts Y, Blank D, Deelder AM, Wuhrer M (2013) Glycoproteomic analysis of antibodies. Mol Cell Proteomics 12:856–865
Zaytseva OO, Jansen BC, Hanić M et al (2018) MIgGGly (mouse IgG glycosylation analysis)—a high-throughput method for studying Fc-linked IgG N-glycosylation in mice with nanoUPLC-ESI-MS. Sci Rep 8:13688
Zhang J, Wang DI c. (1998) Quantitative analysis and process monitoring of site-specific glycosylation microheterogeneity in recombinant human interferon-γ from Chinese hamster ovary cell culture by hydrophilic interaction chromatography. J Chromatogr B Biomed Appl 712:73–82
Zhang Z, Pan H, Chen X (2009) Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev 28:147–176
Zhang H, Cui W, Gross ML (2014) Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 588:308–317
Zhang L, Ma S, Chen Y, Wang Y, Ou J, Uyama H, Ye M (2019) Facile fabrication of biomimetic chitosan membrane with honeycomb-like structure for enrichment of glycosylated peptides. Anal Chem 91:2985–2993
Zhao J, Li S, Li C, Wu SL, Xu W, Chen Y, Shameem M, Richardson D, Li H (2016) Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal Chem 88:7049–7059
Zhong X, Zhang Z, Jiang S, Li L (2014) Recent advances in coupling capillary electrophoresis based separation techniques to ESI and MALDI MS. Electrophoresis 35:1214–1225
Zhou H, Briscoe AC, Froehlich JW, Lee RS (2012) PNGase F catalyzes de-N-glycosylation in a domestic microwave. Anal Biochem 427:33–35
Zhou S, Tello N, Harvey A, Boyes B, Orlando R, Mechref Y (2016) Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards. Electrophoresis 37:1489–1497
Zhou S, Dong X, Veillon L, Huang Y, Mechref Y (2017) LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 409:453–466
Zhou Y, Sheng X, Garemark J, Josefsson L, Sun L, Li Y, Emmer Å (2020) Enrichment of glycopeptides using environmentally friendly wood materials. Green Chem 22:5666–5676
Zhurov KO, Fornelli L, Wodrich MD, Laskay ÜA, Tsybin YO (2013) Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem Soc Rev 42:5014–5030
Zou X, Jie J, Yang B (2017) Single-step enrichment of N-glycopeptides and phosphopeptides with novel multifunctional Ti4 + -immobilized dendritic polyglycerol coated chitosan nanomaterials. Anal Chem 89:7520–7526
Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266. https://pubs.acs.org/doi/10.1021/ja973478k. Accessed 6 Aug 2020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Funding
Conflict of Interest: Siniša Habazin, Jerko Štambuk, Jelena Šimunović, Genadij Razdorov and Mislav Novokmet are employees of Genos Ltd., a privately held company specialized in commercial high-throughput glycan analysis. Toma Keser declares that he has no conflict of interest.
Ethical Approval: This book chapter does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Habazin, S., Štambuk, J., Šimunović, J., Keser, T., Razdorov, G., Novokmet, M. (2021). Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. In: Pezer, M. (eds) Antibody Glycosylation. Experientia Supplementum, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-76912-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-76912-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76911-6
Online ISBN: 978-3-030-76912-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)