Skip to main content

Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis

  • Chapter
  • First Online:
Antibody Glycosylation

Part of the book series: Experientia Supplementum ((EXS,volume 112))

Abstract

Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography–mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-AA:

2-aminobenzoic acid (anthranilic acid)

2-AB:

2-aminobenzamide (anthranilamide)

2-AP:

2-aminopyridine

4-HCCA:

α-cyano-4-hydroxycinnamic acid

Abs:

Antibodies

ACN:

Acetonitrile

ANTS:

8-aminonaphthalene-1,3,6-trisulfonate

APS-PEG:

Aminopropylsilane-polyethylene glycol

APTS:

8-aminopyrene-1,3,6-trisulfonate

CE:

Capillary electrophoresis

CEC:

Capillary electrochromatography

CE–LIF:

Capillary electrophoresis with laser-induced fluorescence detection

CE–MS:

Capillary electrophoresis coupled to mass spectrometry

CFG:

Consortium for Functional Glycomics

CGE:

Capillary gel electrophoresis

CID:

Collision-induced dissociation

CIEF:

Capillary isoelectric focusing

Cl-CCA:

4-chloro-α-cyanocinnamic acid

CNBr:

Cyanogen bromide

CZE:

Capillary zone electrophoresis

DHB:

2,5-dihydroxybenzoic acid (gentisic acid)

DTT:

Dithiothreitol

EACA:

ε-aminocaproic acid

ECD:

Electron capture dissociation

EDC:

1-ethyl-3(−3-dimethylaminopropyl) carbodiimide hydrochloride

EDTA:

Ethylenediaminetetraacetic acid

ESI:

Electrospray ionization

ESI–MS:

Electrospray ionization mass spectrometry

ETD:

Electron transfer dissociation

EThcD:

Electron transfer/higher energy collision dissociation

Fab:

Fragment antigen-binding

FASP:

Filter-aided sample preparation

Fc:

Fragment crystallizable

Fmoc-Cl:

Fluorenylmethoxycarbonyl chloride

FT-ICR:

Fourier-transform ion cyclotron resonance

GlcNAc:

N-acetylglucosamine

HCD:

Higher-energy collision dissociation

HILIC:

Hydrophilic interaction liquid chromatography

HILIC–SPE:

Solid-phase extraction using hydrophilic interaction liquid chromatography

HILIC–UPLC–FLR:

Hydrophilic interaction ultraperformance liquid chromatography with fluorescence detection

HOBt:

1-hydroxybenzotriazole

HPAEC:

High-pH anion exchange chromatography

IAA:

Iodoacetamide

IgE:

Immunoglobulin E

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

Igs:

Immunoglobulins

IM-MS:

Ion mobility-mass spectrometry

ISD:

In-source decay

ITP:

Isotachophoresis

K a :

Equilibrium association constant

LC–MS:

Liquid chromatography coupled with mass spectrometry

LDI:

Laser desorption ionization

m/z:

Mass-to-charge ratio

mAbs:

Monoclonal antibodies

MALDI:

Matrix-assisted laser desorption/ionization

MALDI–MS:

MALDI coupled with mass spectrometry

MALDI-TOF–MS:

MALDI coupled with time-of-flight mass spectrometry

MECC/MEKC:

Micellar electrokinetic capillary chromatography

MEEKC:

Microemulsion electrokinetic chromatography

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NACE:

Nonaqueous capillary electrophoresis

nano-LC:

Nano-liquid chromatography

Neu5Gc:

N-glycolylneuraminic acid

NP-HPLC:

Normal-phase high-performance liquid chromatography

pAbs:

Polyclonal antibodies

PGC:

Porous graphitized carbon

PGC-LC:

Porous graphitized carbon liquid chromatography

PMP:

1-phenyl-3-methyl-5-pyrazolone

PNGase F:

Peptide:N-glycosidase F

PpL:

Protein L

ProA:

Procainamide

PTM:

Posttranslational modification

Q-TOF:

Quadrupole time-of-flight

RP:

Reversed-phase

RP-LC:

Reversed-phase liquid chromatography

SpA:

Protein A

SpG:

Protein G

TETA:

Triethylenetetramine

TFA:

Trifluoroacetic acid

TMT:

Tandem mass tag

TOF:

Time-of-flight

UPLC®:

Ultra performance liquid chromatography

(U)HPLC–FLR–MS:

(ultra)high-performance liquid chromatography with fluorescence detection coupled to mass spectrometry

ZIC-HILIC:

Zwitterionic hydrophilic liquid interaction chromatography

References

  • Abrahams JL, Campbell MP, Packer NH (2018) Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 35:15–29

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk B, Tharmalingam-Jaikaran T, Schomberg M, Szekrényes Á, Kelly RM, Karlsson NG, Guttman A, Rudd PM (2014) Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr Res 389:174–185

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Alagesan K, Khilji SK, Kolarich D (2017) It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 409:529–538

    Article  CAS  PubMed  Google Scholar 

  • Albrecht S, Mittermayr S, Smith J, Martín SM, Doherty M, Bones J (2017) Twoplex 12/13C6 aniline stable isotope and linkage-specific sialic acid labeling 2D-LC-MS workflow for quantitative N-glycomics. Proteomics 17:1600304

    Article  CAS  Google Scholar 

  • Alley WR, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23:161–170

    Article  CAS  PubMed  Google Scholar 

  • Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196

    Article  CAS  Google Scholar 

  • Amano M, Nishimura S-I (2010) Large-scale glycomics for discovering cancer-associated N-glycans by integrating glycoblotting and mass spectrometry. Methods Enzymol 478:109–125

    Article  CAS  PubMed  Google Scholar 

  • An HJ, Lebrilla CB (2011) Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (tutorial). Mass Spectrom Rev 30:560–578

    Article  CAS  PubMed  Google Scholar 

  • Angel PM, Lim J-M, Wells L, Bergmann C, Orlando R (2007) A potential pitfall in 18O-based N-linked glycosylation site mapping. Rapid Commun Mass Spectrom 21:674–682

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  PubMed  Google Scholar 

  • Ashline DJ, Lapadula AJ, Liu Y-H, Lin M, Grace M, Pramanik B, Reinhold VN (2007) Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 79:3830–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwood JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R (2008) Quantitation by isobaric labeling: applications to glycomics. J Proteome Res 7:367–374

    Article  CAS  PubMed  Google Scholar 

  • Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, Baessmann C, Wagner-Rousset E, Suckau D, Beck A (2013) Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. mAbs 5:699–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC (2005) A platform for high-throughput molecular characterization of recombinant monoclonal antibodies. J Chromatogr B Anal Technol Biomed Life Sci 826:177–187

    Article  CAS  Google Scholar 

  • Bapiro TE, Richards FM, Jodrell DI (2016) Understanding the complexity of porous graphitic carbon (PGC) chromatography: modulation of mobile-stationary phase interactions overcomes loss of retention and reduces variability. Anal Chem 88:6190–6194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi C, Yuan Y, Tu Y, Wu J, Liang Y, Li Y, He X, Chen L, Zhang Y (2020) Facile synthesis of hydrophilic magnetic graphene nanocomposites via dopamine self-polymerization and Michael addition for selective enrichment of N-linked glycopeptides. Sci Rep 10:71. https://doi.org/10.1038/s41598-019-56944-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238

    Article  CAS  PubMed  Google Scholar 

  • Bindila L, Peter-Katalinić J, Zamfir A (2005) Sheathless reverse-polarity capillary electrophoresis-electrospray-mass spectrometry for analysis of underivatized glycoconjugates. Electrophoresis 26:1488–1499

    Article  CAS  PubMed  Google Scholar 

  • Bodnar ED, Perreault H (2015) Synthesis and evaluation of carboxymethyl chitosan for glycopeptide enrichment. Anal Chim Acta 891:179–189

    Article  CAS  PubMed  Google Scholar 

  • Bodnar J, Szekrenyes A, Szigeti M, Jarvas G, Krenkova J, Foret F, Guttman A (2016) Enzymatic removal of N-glycans by PNGase F coated magnetic microparticles. Electrophoresis 37:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Boesl U (2017) Time-of-flight mass spectrometry: introduction to the basics. Mass Spectrom Rev 36:86–109

    Article  CAS  PubMed  Google Scholar 

  • Bondt A, Rombouts Y, Selman MHJ, Hensbergen PJ, Reiding KR, Hazes JMW, Dolhain RJEM, Wuhrer M (2014) Immunoglobulin G (IgG) fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics 13:3029–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  CAS  PubMed  Google Scholar 

  • Butler M, Quelhas D, Critchley AJ et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13:601–622

    Article  CAS  PubMed  Google Scholar 

  • Bynum MA, Yin H, Felts K, Lee YM, Monell CR, Killeen K (2009) Characterization of IgG N-glycans employing a microfluidic chip that integrates glycan cleavage, sample purification, LC separation, and MS detection. Anal Chem 81:8818–8825

    Article  CAS  PubMed  Google Scholar 

  • Carrasco B, Garcia De La Torre J, Davis KG, Jones S, Athwal D, Walters C, Burton DR, Harding SE (2001) Crystallohydrodynamics for solving the hydration problem for multi-domain proteins: open physiological conformations for human IgG. Biophys Chem 93:181–196

    Article  CAS  PubMed  Google Scholar 

  • Cataldi TRI, Campa C, De Benedetto GE (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing. Fresenius J Anal Chem 368:739–758

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Flynn GC (2007) Analysis of N-glycans from recombinant immunoglobulin G by on-line reversed-phase high-performance liquid chromatography/mass spectrometry. Anal Biochem 370:147–161

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Su W-C, Huang B-Y, Chen Y-J, Tai H-C, Obena RP (2014) Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 139:688–704

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sheng Q, Hong Y, Lan M (2019) Hydrophilic nanocomposite functionalized by carrageenan for the specific enrichment of glycopeptides. Anal Chem 91:4047–4054

    Article  CAS  PubMed  Google Scholar 

  • Chen SW, Tan D, Yang YS, Zhang W (2020) Investigation of the effect of salt additives in Protein L affinity chromatography for the purification of tandem single-chain variable fragment bispecific antibodies. MAbs 12(1):1718440. https://doi.org/10.1080/19420862.2020.1718440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  CAS  PubMed  Google Scholar 

  • Choe W, Durgannavar TA, Chung SJ (2016) Fc-binding ligands of immunoglobulin G: an overview of high affinity proteins and peptides. Materials 9:994

    Article  PubMed Central  CAS  Google Scholar 

  • Collin M, Olsén A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conboy JJ, Henion JD (1992) The determination of glycopeptides by liquid chromatography/mass spectrometry with collision-induced dissociation. J Am Soc Mass Spectrom 3:804–814

    Article  CAS  PubMed  Google Scholar 

  • Cook KS, Bullock K, Sullivan T (2012) Development and qualification of an antibody rapid deglycosylation method. Biologicals 40:109–117

    Article  CAS  PubMed  Google Scholar 

  • Costello CE, Contado-Miller JM, Cipollo JF (2007) A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 18:1799–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dard P, Lefranc MP, Osipova L, Sanchez-Mazas A (2001) DNA sequence variability of IGHG3 alleles associated to the main G3m haplotypes in human populations. Eur J Hum Genet 9:765–772

    Article  CAS  PubMed  Google Scholar 

  • De Haan N, Reiding KR, Haberger M, Reusch D, Falck D, Wuhrer M (2015) Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem 87:8284–8291

    Article  PubMed  CAS  Google Scholar 

  • de Haan N, Falck D, Wuhrer M (2020) Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 30:226–240

    Article  PubMed  CAS  Google Scholar 

  • de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137

    Article  Google Scholar 

  • Demelbauer UM, Zehl M, Plematl A, Allmaier G, Rizzi A (2004) Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun Mass Spectrom 18:1575–1582

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  • Dwek RA, Edge CJ, Harvey DJ, Wormald MR, Parekh RB (1993) Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem 62:65–100

    Article  CAS  PubMed  Google Scholar 

  • Eliuk S, Makarov A (2015) Evolution of orbitrap mass spectrometry instrumentation. Annu Rev Anal Chem (Palo Alto Calif) 8:61–80

    Article  Google Scholar 

  • Eriksson A, Norgren M (2003) Cleavage of antigen-bound immunoglobulin G by SpeB contributes to streptococcal persistence in opsonizing blood. Infect Immun 71:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everest-Dass AV, Abrahams JL, Kolarich D, Packer NH, Campbell MP (2013) Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J Am Soc Mass Spectrom 24:895–906

    Article  CAS  PubMed  Google Scholar 

  • Faccio G (2018) From protein features to sensing surfaces. Sensors (Basel) 18(4):1204. https://doi.org/10.3390/s18041204

    Article  CAS  Google Scholar 

  • Fahnestock SR, Alexander P, Nagle J, Filpula D (1986) Gene for an immunoglobulin-binding protein from a group G streptococcus. J Bacteriol 167:870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faid V, Leblanc Y, Bihoreau N, Chevreux G (2018) Middle-up analysis of monoclonal antibodies after combined IgdE and IdeS hinge proteolysis: investigation of free sulfhydryls. J Pharm Biomed Anal 149:541–546

    Article  CAS  PubMed  Google Scholar 

  • Falck D, Jansen BC, Plomp R, Reusch D, Haberger M, Wuhrer M (2015) Glycoforms of immunoglobulin G based biopharmaceuticals are differentially cleaved by trypsin due to the glycoform influence on higher-order structure. J Proteome Res 14:4019–4028

    Article  CAS  PubMed  Google Scholar 

  • Fan JQ, Kondo A, Kato I, Lee YC (1994) High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal Biochem 219:224–229

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science (New York, NY) 246:64–71

    Article  CAS  Google Scholar 

  • Formolo T, Heckert A, Phinney KW (2014) Analysis of deamidation artifacts induced by microwave-assisted tryptic digestion of a monoclonal antibody. Anal Bioanal Chem 406:6587–6598

    Article  CAS  PubMed  Google Scholar 

  • Gebrehiwot AG, Melka DS, Kassaye YM, Gemechu T, Lako W, Hinou H, Nishimura S-I (2019) Exploring serum and immunoglobulin G N-glycome as diagnostic biomarkers for early detection of breast cancer in Ethiopian women. BMC Cancer 19:588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gennaro LA, Salas-Solano O (2008) On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 80:3838–3845

    Article  CAS  PubMed  Google Scholar 

  • Gennaro LA, Salas-Solano O, Ma S (2006) Capillary electrophoresis-mass spectrometry as a characterization tool for therapeutic proteins. Anal Biochem 355:249–258

    Article  CAS  PubMed  Google Scholar 

  • Gevaert K, Impens F, Ghesquière B, Van Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–4885

    Article  CAS  PubMed  Google Scholar 

  • Ghitescu L, Galis Z, Bendayan M (1991) Protein AG-gold complex: an alternative probe in immunocytochemistry. J Histochem Cytochem 39:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat Protoc 11:993–1006

    Article  CAS  PubMed  Google Scholar 

  • Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271

    Article  CAS  PubMed  Google Scholar 

  • Gil G-C, Iliff B, Cerny R, Velander WH, Van Cott KE (2010) High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time of flight mass spectrometry. Anal Chem 82:6613–6620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh JB, Ng SK (2018) Impact of host cell line choice on glycan profile. Crit Rev Biotechnol 38:851–867

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Hoyt E, Lynaugh H, Burnina I, Moore R, Thompson A, Li H (2013) N-glycosylamine-mediated isotope labeling for mass spectrometry-based quantitative analysis of N-linked glycans. Anal Bioanal Chem 405:5825–5831

    Article  CAS  PubMed  Google Scholar 

  • Goso Y (2016) Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins. Anal Biochem 496:35–42

    Article  CAS  PubMed  Google Scholar 

  • Griffiths J (2008) A brief history of mass spectrometry. Anal Chem 80:5678–5683

    Article  CAS  PubMed  Google Scholar 

  • Gross JH (2004) Mass spectrometry. A textbook. Springer, Berlin

    Book  Google Scholar 

  • Gudelj I, Lauc G, Pezer M (2018) Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 333:65–79

    Article  CAS  PubMed  Google Scholar 

  • Haag AM (2016) Mass analyzers and mass spectrometers. Adv Exp Med Biol 919:157–169

    Article  CAS  PubMed  Google Scholar 

  • Habazin S, Novokmet M, Štambuk J, Razdorov G, Keser T, Lauc G (2019) A sweet glimpse of rat immunoglobulin G glycosylation: towards comprehensive rodent animal model glyco(proteo)mics. Glycoconj J 36:267–397

    CAS  Google Scholar 

  • Harazono A, Kawasaki N, Itoh S, Hashii N, Matsuishi-Nakajima Y, Kawanishi T, Yamaguchi T (2008) Simultaneous glycosylation analysis of human serum glycoproteins by high-performance liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 869:20–30

    Article  CAS  Google Scholar 

  • Harvey DJ (1996) Identification of cleaved oligosaccharides by matrix-assisted laser desorption/ionization. In: Methods in molecular biology. Humana Press, Totowa, pp 243–253

    Google Scholar 

  • Harvey DJ (2000) N-(2-diethylamino)ethyl-4-aminobenzamide derivative for high sensitivity mass spectrometric detection and structure determination of N-linked carbohydrates. Rapid Commun Mass Spectrom 14:862–871

    Article  CAS  PubMed  Google Scholar 

  • Harvey DJ (2001) Identification of protein-bound carbohydrates by mass spectrometry. Proteomics 1:311–328

    Article  CAS  PubMed  Google Scholar 

  • Harvey DJ (2020) Negative ion mass spectrometry for the analysis of N-linked glycans. Mass Spectrom Rev 39:586–679. https://doi.org/10.1002/mas.21622

    Article  CAS  PubMed  Google Scholar 

  • Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM (2002) “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem 74:734–740

    Article  CAS  PubMed  Google Scholar 

  • Harvey DJ, Royle L, Radcliffe CM, Rudd PM, Dwek RA (2008) Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal Biochem 376:44–60

    Article  CAS  PubMed  Google Scholar 

  • Hemström P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Alba O, Wagner-Rousset E, Beck A, Cianférani S (2018) Native mass spectrometry, ion mobility, and collision-induced unfolding for conformational characterization of IgG4 monoclonal antibodies. Anal Chem 90:8865–8872

    Article  CAS  PubMed  Google Scholar 

  • Higel F, Demelbauer U, Seidl A, Friess W, Sörgel F (2013) Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem 405:2481–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higel F, Seidl A, Demelbauer U, Sörgel F, Frieß W (2014) Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins. mAbs 6:894–903

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U, Pengelley S, Jabs W, Seeberger PH, Silva DV, Wuhrer M, Kolarich D (2016) The art of destruction: optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J Am Soc Mass Spectrom 27:507–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama K, Yuji R, Yamada N, Kato K, Arata Y, Shimada I (1998) Complete and rapid peptide and glycopeptide mapping of mouse monoclonal antibody by LC/MS/MS using ion trap mass spectrometry. Anal Chem 70:2718–2725

    Article  CAS  PubMed  Google Scholar 

  • Holland M, Yagi H, Takahashi N, Kato K, Savage COS, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta Gen Subj 1760:669–677

    Article  CAS  Google Scholar 

  • Hong Y, Zhao H, Pu C, Zhan Q, Sheng Q, Lan M (2018) Hydrophilic phytic acid-coated magnetic graphene for titanium(IV) immobilization as a novel hydrophilic interaction liquid chromatography–immobilized metal affinity chromatography platform for glyco- and phosphopeptide enrichment with controllable selectivity. Anal Chem 90:11008–11,015

    Article  CAS  PubMed  Google Scholar 

  • Hsu F-F, Turk J (2004) Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. J Am Soc Mass Spectrom 15:536–546

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Mechref Y (2012) Comparing MALDI-MS, RP-LC-MALDI-MS and RP-LC-ESI-MS glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum. Electrophoresis 33:1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Orlando R (2017) Kinetics of N-Glycan release from human immunoglobulin G (IgG) by PNGase F: all glycans are not created equal. J Biomol Tech 28:150–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77:1432–1439

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Guerrero A, Parker E, Strum JS, Smilowitz JT, German JB, Lebrilla CB (2015) Site-specific glycosylation of secretory immunoglobulin a from human colostrum. J Proteome Res 14:1335–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Liu Y, Wu H, Sun D, Li Y (2017) Characterization of IgG glycosylation in rheumatoid arthritis patients by MALDI-TOF-MSn and capillary electrophoresis. Anal Bioanal Chem 409:3731–3739

    Article  CAS  PubMed  Google Scholar 

  • Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884

    Article  CAS  PubMed  Google Scholar 

  • Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M (2009) IgG glycosylation analysis. Proteomics 9:882–913

    Article  CAS  PubMed  Google Scholar 

  • Hülsmeier AJ, Tobler M, Burda P, Hennet T (2016) Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease. Sci Rep 6:33927. https://doi.org/10.1038/srep33927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janin-Bussat MC, Tonini L, Huillet C, Colas O, Klinguer-Hamour C, Corvaïa N, Beck A (2013) Cetuximab fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol Biol 988:93–113

    Article  CAS  PubMed  Google Scholar 

  • Jansen BC, Reiding KR, Bondt A, Hipgrave Ederveen AL, Palmblad M, Falck D, Wuhrer M (2015) MassyTools: a high-throughput targeted data processing tool for relative quantitation and quality control developed for glycomic and glycoproteomic MALDI-MS. J Proteome Res 14:5088–5098

    Article  CAS  PubMed  Google Scholar 

  • Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, Chen DDY (2014) Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface. Anal Chem 86:6479–6486

    Article  CAS  PubMed  Google Scholar 

  • Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10(12):M111.009910. https://doi.org/10.1074/mcp.M111.009910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong YR, Kim SY, Park YS, Lee GM (2018) Simple and robust N-glycan analysis based on improved 2-aminobenzoic acid labeling for recombinant therapeutic glycoproteins. J Pharm Sci 107:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Jooß K, Sommer J, Bunz SC, Neusüß C (2014) In-line SPE-CE using a fritless bead string design-Application for the analysis of organic sulfonates including inline SPE-CE-MS for APTS-labeled glycans. Electrophoresis 35:1236–1243

    Article  PubMed  CAS  Google Scholar 

  • Jooß K, Meckelmann SW, Klein J, Schmitz OJ, Neusüß C (2019) Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans. Anal Bioanal Chem 411:6255–6264

    Article  PubMed  CAS  Google Scholar 

  • Kamerling JP, Gerwig GJ (2007) 2.01—Strategies for the structural analysis of carbohydrates. In: Kamerling H (ed) Comprehensive glycoscience. Elsevier, Oxford, pp 1–68

    Google Scholar 

  • Kameyama A, Dissanayake SK, Thet Tin WW (2018) Rapid chemical de-N-glycosylation and derivatization for liquid chromatography of immunoglobulin N-linked glycans. PLoS One 13(5):e0196800. https://doi.org/10.1371/journal.pone.0196800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang P, Mechref Y, Klouckova I, Novotny MV (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 19:3421–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang P, Mechref Y, Kyselova Z, Goetz JA, Novotny MV (2007) Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal Chem 79:6064–6073

    Article  CAS  PubMed  Google Scholar 

  • Kanje S, Venskutonytė R, Scheffel J, Nilvebrant J, Lindkvist-Petersson K, Hober S (2018) Protein engineering allows for mild affinity-based elution of therapeutic antibodies. J Mol Biol 430(18 Pt B):3427–3438. https://doi.org/10.1016/j.jmb.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  • Kannicht C, Grunow D, Lucka L (2019) Enzymatic sequence analysis of N-glycans by exoglycosidase cleavage and mass spectrometry: detection of lewis X structures. Methods Mol Biol 1934:51–64

    Article  CAS  PubMed  Google Scholar 

  • Karas M, Krüger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–440

    Article  CAS  PubMed  Google Scholar 

  • Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366:669–676

    Article  CAS  PubMed  Google Scholar 

  • Karav S, Cohen JL, Barile D, de Moura BJMLN (2017) Recent advances in immobilization strategies for glycosidases. Biotechnol Prog 33:104–112

    Article  CAS  PubMed  Google Scholar 

  • Keser T, Pavić T, Lauc G, Gornik O (2018) Comparison of 2-aminobenzamide, procainamide and RapiFluor-MS as derivatizing agents for high-throughput HILIC-UPLC-FLR-MS N-glycan analysis. Front Chem 6:324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kihlberg B-M, Sjöholm AG, Björck L, Sjöbring U (1996) Characterization of the binding properties of protein LG, an immunoglobulin-binding hybrid protein. Eur J Biochem 240:556–563

    Article  CAS  PubMed  Google Scholar 

  • Kim M-S, Pandey A (2012) Electron transfer dissociation mass spectrometry in proteomics. Proteomics 12:530–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobata A (2008) The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 1780:472–478

    Article  CAS  PubMed  Google Scholar 

  • Koguma I, Yamashita S, Sato S, Okuyama K, Katakura Y (2013) Novel purification method of human immunoglobulin by using a thermo-responsive protein A. J Chromatogr A 1305:149–153

    Article  CAS  PubMed  Google Scholar 

  • Korodi M, Rákosi K, Baibarac M, Fejer SN (2020) Reusable on-plate immunoprecipitation method with covalently immobilized antibodies on a protein G covered microtiter plate. J Immunol Methods 483:112812

    Article  CAS  PubMed  Google Scholar 

  • Kotsias M, Blanas A, van Vliet SJ, Pirro M, Spencer DIR, Kozak RP (2019) Method comparison for N-glycan profiling: towards the standardization of glycoanalytical technologies for cell line analysis. PLoS One 14(10):e0223270. https://doi.org/10.1371/journal.pone.0223270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kováčik V, Hirsch J, Kováč P, Heerma W, Thomas-Oates J, Haverkamp J (1995) Oligosaccharide characterization using collision-induced dissociation fast atom bombardment mass spectrometry: evidence for internal monosaccharide residue loss. J Mass Spectrom 30:949–958

    Article  Google Scholar 

  • Kozak RP, Royle L, Gardner RA, Bondt A, Fernandes DL, Wuhrer M (2014) Improved nonreductive O-glycan release by hydrazinolysis with ethylenediaminetetraacetic acid addition. Anal Biochem 453:29–37

    Article  CAS  PubMed  Google Scholar 

  • Krenkova J, Szekrenyes A, Keresztessy Z, Foret F, Guttman A (2013) Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. J Chromatogr A 1322:54–61

    Article  CAS  PubMed  Google Scholar 

  • Kruljec N, Bratkovič T (2017) Alternative affinity ligands for immunoglobulins. Bioconjug Chem 28:2009–2030

    Article  CAS  PubMed  Google Scholar 

  • Kurogochi M, Amano J (2014) Relative quantitation of glycopeptides based on stable isotope labeling using MALDI-TOF MS. Molecules 19:9944–9961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakhrif Z, Pugnière M, Henriquet C, di Tommaso A, Dimier-Poisson I, Billiald P, Juste MO, Aubrey N (2016) A method to confer Protein L binding ability to any antibody fragment. MAbs 8:379–388

    Article  CAS  PubMed  Google Scholar 

  • Lannergård J, Guss B (2006) IdeE, an IgG-endopeptidase of Streptococcus equi ssp. equi. FEMS Microbiol Lett 262:230–235

    Article  PubMed  CAS  Google Scholar 

  • Lauber MA, Yu Y-Q, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ (2015) Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem 87:5401–5409

    Article  CAS  PubMed  Google Scholar 

  • Lermyte F, Tsybin YO, O’Connor PB, Loo JA (2019) Top or middle? Up or down? Toward a standard lexicon for protein top-down and allied mass spectrometry approaches. J Am Soc Mass Spectrom 30:1149–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Gao W, Wang Y, He Z, Feng X, Liu B-F, Liu X (2017) Comprehensive N-glycan profiling of cetuximab biosimilar candidate by NP-HPLC and MALDI-MS. PLos One 12:e0170013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M (2019a) Protein A- and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta 194:664–672

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Jin S, Mei P, Zhou P (2019b) Preparation of cotton wool modified with boric acid functionalized titania for selective enrichment of glycopeptides. Talanta 203:58–64

    Article  CAS  PubMed  Google Scholar 

  • Loos A, Gruber C, Altmann F, Mehofer U, Hensel F, Grandits M, Oostenbrink C, Stadlmayr G, Furtmüller PG, Steinkellner H (2014) Expression and glycoengineering of functionally active heteromultimeric IgM in plants. Proc Natl Acad Sci U S A 111:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Fernández H, Santos HM, Capelo JL, Fdez-Riverola F, Glez-Peña D, Reboiro-Jato M (2015) Mass-Up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinformatics 16:318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Q, Rejtar T, Wu SL, Karger BL (2009) Hydrophilic interaction 10 μm I.D. porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography-mass spectrometry. J Chromatogr A 1216:1223–1231

    Article  CAS  PubMed  Google Scholar 

  • Maher S, Jjunju FP, Taylor S (2015) Colloquium: 100 years of mass spectrometry: perspectives and future trends. Rev Mod Phys 87:113

    Article  CAS  Google Scholar 

  • Maier M, Reusch D, Bruggink C, Bulau P, Wuhrer M, Mølhøj M (2016) Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N -glycans from heterogeneously glycosylated IgGs. J Chromatogr B 1033–1034:342–352

    Article  CAS  Google Scholar 

  • Matsumoto A, Shikata K, Takeuchi F, Kojima N, Mizuochi T (2000) Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J Biochem 128:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mauko L, Nordborg A, Hutchinson JP, Lacher NA, Hilder EF, Haddad PR (2011) Glycan profiling of monoclonal antibodies using zwitterionic-type hydrophilic interaction chromatography coupled with electrospray ionization mass spectrometry detection. Anal Biochem 408:235–241

    Article  CAS  PubMed  Google Scholar 

  • Mauko L, Lacher NA, Pelzing M, Nordborg A, Haddad PR, Hilder EF (2012) Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies. J Chromatogr B Anal Technol Biomed Life Sci 911:93–104

    Article  CAS  Google Scholar 

  • Melmer M, Stangler T, Premstaller A, Lindner W (2011) Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A 1218:118–123

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Huergo SP, Maller SM, Farez MF, Mariño K, Correale J, Rabinovich GA (2014) Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Cytokine Growth Factor Rev 25:247–255

    Article  CAS  PubMed  Google Scholar 

  • Menni C, Keser T, Mangino M et al (2013) Glycosylation of immunoglobulin g: role of genetic and epigenetic influences. PLoS One 8:e82558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michael C, Rizzi AM (2015) Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase. J Chromatogr A 1383:88–95

    Article  CAS  PubMed  Google Scholar 

  • Miller PE, Denton MB (1986) The quadrupole mass filter: basic operating concepts. J Chem Educ 63:617

    Article  CAS  Google Scholar 

  • Miura Y, Endo T (2016) Glycomics and glycoproteomics focused on aging and age-related diseases—glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta Gen Subj 1860:1608–1614

    Article  CAS  Google Scholar 

  • Miura Y, Hato M, Shinohara Y et al (2008) BlotGlycoABC™, an integrated glycoblotting technique for rapid and large scale clinical glycomics. Mol Cell Proteomics 7(2):370–377. https://doi.org/10.1074/MCP.M700377-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Morelle W, Slomianny M-C, Diemer H, Schaeffer C, van Dorsselaer A, Michalski J-C (2004) Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom 18:2637–2649

    Article  CAS  PubMed  Google Scholar 

  • Moser AC, Hage DS (2010) Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis 2:769–790

    Article  CAS  PubMed  Google Scholar 

  • Mouratou B, Béhar G, Pecorari F (2015) Artificial affinity proteins as ligands of immunoglobulins. Biomolecules 5:60–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakakita S, Sumiyoshi W, Miyanishi N, Hirabayashi J (2007) A practical approach to N-glycan production by hydrazinolysis using hydrazine monohydrate. Biochem Biophys Res Commun 362:639–645

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Higo D, Arai E, Nakagawa T, Kakehi K, Taniguchi N, Kondo A (2009) Capillary electrophoresis-electrospray ionization mass spectrometry for rapid and sensitive N-glycan analysis of glycoproteins as 9-fluorenylmethyl derivatives. Glycobiology 19:135–143

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev EN, Jertz R, Grigoryev A, Baykut G (2012) Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7 T. Anal Chem 84:2275–2283

    Article  CAS  PubMed  Google Scholar 

  • Nilson BH, Solomon A, Björck L, Akerström B (1992) Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267:2234–2239

    Article  CAS  PubMed  Google Scholar 

  • Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlén M (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S-I (2011) Toward automated glycan analysis. Adv Carbohydr Chem Biochem 65:219–271

    Article  CAS  PubMed  Google Scholar 

  • Nolting D, Malek R, Makarov A (2019) Ion traps in modern mass spectrometry. Mass Spectrom Rev 38:150–168

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Kameda K, Matsumoto M, Kawasaki N (2017) Rapid glycopeptide enrichment using cellulose hydrophilic interaction/reversed-phase stagetips. Mass Spectrom 6:A0061–A0061

    Article  Google Scholar 

  • Olivova P, Chen W, Chakraborty AB, Gebler JC (2008) Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:29–40

    Article  CAS  PubMed  Google Scholar 

  • Pabst M, Altmann F (2008a) LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Chem 80:7534–7542

    Article  CAS  PubMed  Google Scholar 

  • Pabst M, Altmann F (2008b) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542

    Article  CAS  PubMed  Google Scholar 

  • Pabst M, Kolarich D, Pöltl G, Dalik T, Lubec G, Hofinger A, Altmann F (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384:263–273

    Article  CAS  PubMed  Google Scholar 

  • Pabst TM, Palmgren R, Forss A, Vasic J, Fonseca M, Thompson C, Wang WK, Wang X, Hunter AK (2014) Engineering of novel Staphylococcal Protein A ligands to enable milder elution pH and high dynamic binding capacity. J Chromatogr A 1362:180–185

    Article  CAS  PubMed  Google Scholar 

  • Pabst M, Benešová I, Fagerer SR et al (2016) Differential isotope labeling of glycopeptides for accurate determination of differences in site-specific glycosylation. J Proteome Res 15:326–331

    Article  CAS  PubMed  Google Scholar 

  • Page M, Thorpe R (2002) Purification of IgG by precipitation with sodium sulfate or ammonium sulfate. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, NJ, pp 983–984

    Chapter  Google Scholar 

  • Paul M, Reljic R, Klein K et al (2014) Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. mAbs 6:1585–1597

    Article  PubMed  PubMed Central  Google Scholar 

  • Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I, Koeleman CAM, Deelder AM, Wuhrer M (2014) Site-specific N-glycosylation analysis of human immunoglobulin e. J Proteome Res 13:536–546

    Article  CAS  PubMed  Google Scholar 

  • Pučić M, Knežević A, Vidič J et al (2011) High throughput isolation and glycosylation analysis of IgG–variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10(10):M111.010090. https://doi.org/10.1074/mcp.M111.010090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q (2007) Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzy. Anal Biochem 364:8–18

    Article  CAS  PubMed  Google Scholar 

  • Ramirez K, Campbell E, Han S-Y, Buehler J, Phan T, Young Yoon H, Lee YL, Suresh T, Sulchek T (2019) Optimization of microparticle reagents to collect and detect antibody. Langmuir 35:11717–11,724

    Article  CAS  PubMed  Google Scholar 

  • Ramos II, Marques SS, Magalhães LM, Barreiros L, Reis S, Lima JLFC, Segundo MA (2019) Assessment of immunoglobulin capture in immobilized protein A through automatic bead injection. Talanta 204:542–547

    Article  CAS  PubMed  Google Scholar 

  • Redman EA, Batz NG, Mellors JS, Ramsey JM (2015) Integrated microfluidic capillary electrophoresis-electrospray ionization devices with online ms detection for the separation and characterization of intact monoclonal antibody variants. Anal Chem 87:2264–2272

    Article  CAS  PubMed  Google Scholar 

  • Rehder DS, Dillon TM, Pipes GD, Bondarenko PV (2006) Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A 1102:164–175

    Article  CAS  PubMed  Google Scholar 

  • Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793

    Article  CAS  PubMed  Google Scholar 

  • Reusch D, Haberger M, Kailich T, Heidenreich A-K, Kampe M, Bulau P, Wuhrer M (2014) High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs 6:185–196

    Article  PubMed  Google Scholar 

  • Reusch D, Haberger M, Falck D et al (2015a) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-part 2: mass spectrometric methods. mAbs 7:732–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusch D, Haberger M, Maier B et al (2015b) Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles—part 1: separation-based methods. mAbs 7:167–179

    Article  CAS  PubMed  Google Scholar 

  • Rispens T, Vidarsson G (2014) Human IgG subclasses. In: Antibody Fc. Elsevier, Amsterdam, pp 159–177

    Chapter  Google Scholar 

  • Ritamo I, Räbinä J, Natunen S, Valmu L (2013) Nanoscale reversed-phase liquid chromatography–mass spectrometry of permethylated N-glycans. Anal Bioanal Chem 405:2469–2480

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo G, Gruvegård M, Van Alstine JM (2015) Antibody fragments and their purification by protein L affinity chromatography. Antibodies 4:259–277

    Article  CAS  Google Scholar 

  • Roy R, Ang E, Komatsu E, Domalaon R, Bosseboeuf A, Harb J, Hermouet S, Krokhin O, Schweizer F, Perreault H (2018) Absolute quantitation of glycoforms of two human IgG subclasses using synthetic Fc peptides and glycopeptides. J Am Soc Mass Spectrom 29:1086–1098

    Article  CAS  PubMed  Google Scholar 

  • Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 304:70–90

    Article  CAS  PubMed  Google Scholar 

  • Rudd PM, Colominas C, Royle L, Murphy N, Hart E, Merry AH, Hebestreit HF, Dwek RA (2001) A high-performance liquid chromatography based strategy for rapid, sensitive sequencing ofN-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 1:285–294

    Article  CAS  PubMed  Google Scholar 

  • Ruhaak LR, Deelder AM, Wuhrer M (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem 394:163–174

    Article  CAS  PubMed  Google Scholar 

  • Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010a) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397:3457–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhaak LR, Steenvoorden E, Koeleman CAM, Deelder AM, Wuhrer M (2010b) 2-picoline-borane: a non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics 10:2330–2336

    Article  CAS  PubMed  Google Scholar 

  • Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB (2018) Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev 118:7886–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saba JA, Kunkel JP, Jan DCH, Ens WE, Standing KG, Butler M, Jamieson JC, Perreault H (2002) A study of immunoglobulin g glycosylation in monoclonal and polyclonal species by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 305:16–31

    Article  CAS  PubMed  Google Scholar 

  • Sajid MS, Jabeen F, Hussain D, Gardner QA, Ashiq MN, Najam-ul-Haq M (2020) Boronic acid functionalized fibrous cellulose for the selective enrichment of glycopeptides. J Sep Sci 43:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Saldova R, Asadi Shehni A, Haakensen VD, Steinfeld I, Hilliard M, Kifer I, Helland Å, Yakhini Z, Børresen-Dale AL, Rudd PM (2014) Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J Proteome Res 13:2314–2327

    Article  CAS  PubMed  Google Scholar 

  • Salimi K, Usta DD, Koçer İ, Çelik E, Tuncel A (2018) Protein A and protein A/G coupled magnetic SiO2 microspheres for affinity purification of immunoglobulin G. Int J Biol Macromol 111:178–185

    Article  CAS  PubMed  Google Scholar 

  • Sauer-Eriksson AE, Kleywegt GJ, Uhlén M, Jones TA (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3:265–278

    Article  CAS  PubMed  Google Scholar 

  • Selman MHJ, Hemayatkar M, Deelder AM, Wuhrer M (2011) Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem 83:2492–2499

    Article  CAS  PubMed  Google Scholar 

  • Selman MHJ, Derks RJE, Bondt A, Palmblad M, Schoenmaker B, Koeleman CAM, van de Geijn FE, Dolhain RJEM, Deelder AM, Wuhrer M (2012a) Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteome 75:1318–1329

    Article  CAS  Google Scholar 

  • Selman MHJ, Hoffmann M, Zauner G, McDonnell LA, Balog CIA, Rapp E, Deelder AM, Wuhrer M (2012b) MALDI-TOF-MS analysis of sialylated glycans and glycopeptides using 4-chloro-α-cyanocinnamic acid matrix. Proteomics 12:1337–1348

    Article  CAS  PubMed  Google Scholar 

  • Sénard T, Gargano AFG, Falck D, de Taeye SW, Rispens T, Vidarsson G, Wuhrer M, Somsen GW, Domínguez-Vega E (2020) MS-based allotype-specific analysis of polyclonal IgG-Fc N-glycosylation. Front Immunol 11:2049. https://doi.org/10.3389/fimmu.2020.02049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha Q, Wu Y, Wang C, Sun B, Zhang Z, Zhang L, Lin Y, Liu X (2018) Cellulose microspheres-filled pipet tips for purification and enrichment of glycans and glycopeptides. J Chromatogr A 1569:8–16

    Article  CAS  PubMed  Google Scholar 

  • Sheng S, Kong F (2012) Separation of antigens and antibodies by immunoaffinity chromatography. Pharm Biol 50:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Shiang Y-C, Lin C-A, Huang C-C, Chang H-T (2011) Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma. Analyst 136:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Shiao J-Y, Chang Y-T, Chang M-C, Chen MX, Liu L-W, Wang X-Y, Tsai Y-J, Kuo T-C, Tsai I-L (2020) Development of efficient on-bead protein elution process coupled to ultra-high performance liquid chromatography–tandem mass spectrometry to determine immunoglobulin G subclass and glycosylation for discovery of bio-signatures in pancreatic disease. J Chromatogr A 1621:461039

    Article  CAS  PubMed  Google Scholar 

  • Shou WZ, Naidong W (2005) Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phases in the hydrophilic interaction chromatography-electrospray tandem mass spectrometric (HILIC-ESI/MS/MS) bioanalysis of basic compounds. J Chromatogr B Anal Technol Biomed Life Sci 825:186–192

    Article  CAS  Google Scholar 

  • Shubhakar A, Kozak RP, Reiding KR, Royle L, Spencer DIR, Fernandes DL, Wuhrer M (2016) Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal Chem 88:8562–8569

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Zampronio CG, Creese AJ, Cooper HJ (2012) Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res 11:4517–4525

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Pipes G, Topp EM, Bondarenko PV, Treuheit MJ, Gadgil HS (2008) Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs. J Am Soc Mass Spectrom 19:1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Sjögren J, Struwe WB, Cosgrave EFJ, Rudd PM, Stervander M, Allhorn M, Hollands A, Nizet V, Collin M (2013) EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem J 455:107

    Article  PubMed  CAS  Google Scholar 

  • Sjögren J, Cosgrave EFJ, Allhorn M, Nordgren M, Björk S, Olsson F, Fredriksson S, Collin M (2015) EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans. Glycobiology 25:1053–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sjögren J, Olsson F, Beck A (2016) Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 141:3114–3125

    Article  PubMed  CAS  Google Scholar 

  • Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899

    Article  CAS  PubMed  Google Scholar 

  • Sobott F, Watt SJ, Smith J, Edelmann MJ, Kramer HB, Kessler BM (2009) Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination. J Am Soc Mass Spectrom 20:1652–1659

    Article  CAS  PubMed  Google Scholar 

  • Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD (2016) Oxidative release of natural glycans for functional glycomics. Nat Methods 13:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoerry C, Seele J, Valentin-Weigand P, Baums CG, von Pawel-Rammingen U (2016) Identification and characterization of IgdE, a novel IgG-degrading protease of Streptococcus suis with unique specificity for porcine IgG. J Biol Chem 291:7915–7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871

    Article  CAS  PubMed  Google Scholar 

  • Stadlmann J, Pabst M, Altmann F (2010) Analytical and functional aspects of antibody sialylation. J Clin Immunol 30(Suppl 1):S15–S19

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Taniguchi N, Aebi M (2017) N-Glycans. In: Varki A, Cummings RD, Esko JD Essentials of glycobiology [Internet]. 3rd. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Steffen U, Koeleman CA, Sokolova MV et al (2020) IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 11(1):120. https://doi.org/10.1038/s41467-019-13992-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Yu X, Bao C, Wang L, Li M, Gan J, Qu D, Ma J, Chen L (2015) Identification and characterization of a novel prokaryotic peptide N-glycosidase from Elizabethkingia meningoseptica. J Biol Chem 290:7452–7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson HG, Wedemeyer WJ, Ekstrom JL, Callender DR, Kortemme T, Kim DE, Sjöbring U, Baker D (2004) Contributions of amino acid side chains to the kinetics and thermodynamics of the bivalent binding of protein L to Ig kappa light chain. Biochemistry 43:2445–2457

    Article  CAS  PubMed  Google Scholar 

  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo Z, Guttman A, Karger BL (2010) Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem 82:2588–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szigeti M, Bondar J, Gjerde D, Keresztessy Z, Szekrenyes A, Guttman A (2016) Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns. J Chromatogr B Analyt Technol Biomed Life Sci 1032:139–143

    Article  CAS  PubMed  Google Scholar 

  • Takakura D, Harazono A, Hashii N, Kawasaki N (2014) Selective glycopeptide profiling by acetone enrichment and LC/MS. J Proteome 101:17–30

    Article  CAS  Google Scholar 

  • Takayama M (2016) MALDI in-source decay of protein: the mechanism of c-Ion formation. Mass Spectrom (Tokyo) 5(1):A0044. https://doi.org/10.5702/massspectrometry.A0044

    Article  Google Scholar 

  • Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura SI (2006) Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J Chromatogr A 1113:177–181

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  • Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Han L, Buckner AC, Ruotolo BT (2015) Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal Chem 87:11509–11,515

    Article  CAS  PubMed  Google Scholar 

  • Tissot B, North SJ, Ceroni A, Pang PC, Panico M, Rosati F, Capone A, Haslam SM, Dell A, Morris HR (2009) Glycoproteomics: past, present and future. FEBS Lett 583:1728–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todoroki K, Mizuno H, Sugiyama E, Toyo’oka T (2020) Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: a review of recent advances and future perspectives. J Pharm Biomed Anal 179:112991

    Article  CAS  PubMed  Google Scholar 

  • Tong X, Li T, Orwenyo J, Toonstra C, Wang L-X (2018) One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes. Bioorg Med Chem 26:1347–1355

    Article  CAS  PubMed  Google Scholar 

  • Tran BQ, Barton C, Feng J et al (2016) Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. J Proteome 134:93–101

    Article  CAS  Google Scholar 

  • Trang HK, Marcus RK (2017) Application of protein A-modified capillary-channeled polymer polypropylene fibers to the quantitation of IgG in complex matrices. J Pharm Biomed Anal 142:49–58

    Article  CAS  PubMed  Google Scholar 

  • Trastoy B, Klontz E, Orwenyo J, Marina A, Wang L-X, Sundberg EJ, Guerin ME (2018) Structural basis for the recognition of complex-type N-glycans by Endoglycosidase S. Nat Commun 9:1874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vainauskas S, Kirk CH, Petralia L et al (2018) A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes. Sci Rep 8(1):9504. https://doi.org/10.1038/s41598-018-27797-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y (2016) The emerging importance of IgG Fab glycosylation in immunity. J Immunol 196:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Cummings RD, Esko JD et al (eds) (2015) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y (2017) Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38:2100–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestal ML, Campbell JM (2005) Tandem time-of-flight mass spectrometry. Methods Enzymol 402:79–108

    Article  CAS  PubMed  Google Scholar 

  • Vilaj M, Lauc G, Trbojević-Akmačić I (2020) Evaluation of different PNGase F enzymes in immunoglobulin G and total plasma N-glycans analysis. Glycobiology. https://doi.org/10.1093/glycob/cwaa047

  • Vincents B, Guentsch A, Kostolowska D, von Pawel-Rammingen U, Eick S, Potempa J, Abrahamson M (2011) Cleavage of IgG1 and IgG3 by gingipain K from Porphyromonas gingivalis may compromise host defense in progressive periodontitis. FASEB J 25:3741–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpi N, Maccari F (2013) Capillary Electrophoresis of Biomolecules. Human Press, Springer Science+Business Media

    Book  Google Scholar 

  • von Pawel-Rammingen U, Johansson BP, Björck L (2002) IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21:1607–1615

    Article  Google Scholar 

  • Vreeker GCM, Wuhrer M (2017) Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 409:359–378

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Voglmeir J (2014) PNGases as valuable tools in glycoprotein analysis. Protein Pept Lett 21:976–985

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Cai ZP, Gu XQ, Ma HY, Du YM, Huang K, Voglmeir J, Liu L (2014) Discovery and characterization of a novel extremely acidic bacterial N-glycanase with combined advantages of PNGase F and A. Biosci Rep 34(6):e00149. https://doi.org/10.1042/BSR20140148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Qiang S, Jin W, Song X, Zhang Y, Huang L, Wang Z (2018a) Reductive chemical release of N-glycans as 1-amino-alditols and subsequent 9-fluorenylmethyloxycarbonyl labeling for MS and LC/MS analysis. J Proteome 187:47–58

    Article  CAS  Google Scholar 

  • Wang C, Yang M, Gao X, Li C, Zou Z, Han J, Huang L, Wang Z (2018b) The ammonia-catalyzed release of glycoprotein N-glycans. Glycoconj J 35:411–420

    Article  CAS  PubMed  Google Scholar 

  • Weng Y, Qu Y, Jiang H, Wu Q, Zhang L, Yuan H, Zhou Y, Zhang X, Zhang Y (2014) An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling. Anal Chim Acta 833:1–8

    Article  CAS  PubMed  Google Scholar 

  • West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217:3201–3216

    Article  CAS  PubMed  Google Scholar 

  • Wuhrer M, Deelder AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 825:124–133

    Article  CAS  Google Scholar 

  • Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM (2006) Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom 20:1747–1754

    Article  CAS  PubMed  Google Scholar 

  • Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007a) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128

    Article  CAS  PubMed  Google Scholar 

  • Wuhrer M, Stam JC, van de Geijn FE, Koeleman CAMM, Verrips CT, Dolhain RJEMEM, Hokke CH, Deelder AM (2007b) Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7:4070–4081

    Article  CAS  PubMed  Google Scholar 

  • Wuhrer M, De Boer AR, Deelder AM (2009) Structural glycomics using Hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28:192–206

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Tchekhovskoi D, Mirokhin Y, Stein S, Kilpatrick L (2012) Optimization of tryptic digestion methods for LC-MS/MS analysis of chimeric immunoglobulin G. J Biomol Tech 23:S44

    PubMed Central  Google Scholar 

  • Yang L, Biswas ME, Chen P (2003) Study of binding between protein A and immunoglobulin G using a surface tension probe. Biophys J 84:509–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Sun A, Zhao X et al (2020) Preparation and application of a beta-d-glucan microsphere conjugated protein A/G. Int J Biol Macromol 151:878–884

    Article  CAS  PubMed  Google Scholar 

  • Yost RA, Enke CG (1979) Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem 51:1251–1264

    Article  CAS  PubMed  Google Scholar 

  • Zaia J (2010) Mass spectrometry and glycomics. Omics 14:401–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaia J (2013) Capillary electrophoresis-mass spectrometry of carbohydrates. In: Methods in molecular biology. Humana Press, Totowa, NJ, pp 139–151

    Google Scholar 

  • Zauner G, Selman MHJ, Bondt A, Rombouts Y, Blank D, Deelder AM, Wuhrer M (2013) Glycoproteomic analysis of antibodies. Mol Cell Proteomics 12:856–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaytseva OO, Jansen BC, Hanić M et al (2018) MIgGGly (mouse IgG glycosylation analysis)—a high-throughput method for studying Fc-linked IgG N-glycosylation in mice with nanoUPLC-ESI-MS. Sci Rep 8:13688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Wang DI c. (1998) Quantitative analysis and process monitoring of site-specific glycosylation microheterogeneity in recombinant human interferon-γ from Chinese hamster ovary cell culture by hydrophilic interaction chromatography. J Chromatogr B Biomed Appl 712:73–82

    Article  CAS  Google Scholar 

  • Zhang Z, Pan H, Chen X (2009) Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev 28:147–176

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cui W, Gross ML (2014) Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 588:308–317

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ma S, Chen Y, Wang Y, Ou J, Uyama H, Ye M (2019) Facile fabrication of biomimetic chitosan membrane with honeycomb-like structure for enrichment of glycosylated peptides. Anal Chem 91:2985–2993

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li S, Li C, Wu SL, Xu W, Chen Y, Shameem M, Richardson D, Li H (2016) Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal Chem 88:7049–7059

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Zhang Z, Jiang S, Li L (2014) Recent advances in coupling capillary electrophoresis based separation techniques to ESI and MALDI MS. Electrophoresis 35:1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Briscoe AC, Froehlich JW, Lee RS (2012) PNGase F catalyzes de-N-glycosylation in a domestic microwave. Anal Biochem 427:33–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Tello N, Harvey A, Boyes B, Orlando R, Mechref Y (2016) Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards. Electrophoresis 37:1489–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Dong X, Veillon L, Huang Y, Mechref Y (2017) LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 409:453–466

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Sheng X, Garemark J, Josefsson L, Sun L, Li Y, Emmer Å (2020) Enrichment of glycopeptides using environmentally friendly wood materials. Green Chem 22:5666–5676

    Article  CAS  Google Scholar 

  • Zhurov KO, Fornelli L, Wodrich MD, Laskay ÜA, Tsybin YO (2013) Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem Soc Rev 42:5014–5030

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Jie J, Yang B (2017) Single-step enrichment of N-glycopeptides and phosphopeptides with novel multifunctional Ti4 + -immobilized dendritic polyglycerol coated chitosan nanomaterials. Anal Chem 89:7520–7526

    Article  CAS  PubMed  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266. https://pubs.acs.org/doi/10.1021/ja973478k. Accessed 6 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mislav Novokmet .

Editor information

Editors and Affiliations

Ethics declarations

Funding

Conflict of Interest: Siniša Habazin, Jerko Štambuk, Jelena Šimunović, Genadij Razdorov and Mislav Novokmet are employees of Genos Ltd., a privately held company specialized in commercial high-throughput glycan analysis. Toma Keser declares that he has no conflict of interest.

Ethical Approval: This book chapter does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habazin, S., Štambuk, J., Šimunović, J., Keser, T., Razdorov, G., Novokmet, M. (2021). Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. In: Pezer, M. (eds) Antibody Glycosylation. Experientia Supplementum, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-76912-3_3

Download citation

Publish with us

Policies and ethics