Skip to main content

Digital Health Interventions

Abstract

Non-communicable diseases are the leading cause of death and lead to high health economic burden. Digital health interventions are appropriate means to support the prevention and management of non-communicable diseases. Digital health interventions rely on information and communication technologies and allow medical doctors and other caregivers to scale and tailor long-term treatments to individuals in need at sustainable costs. This chapter provides an overview of digital health interventions and how they are linked to a connected ecosystem of various health-care actors. Thereby opportunities for these actors and digital health interventions are outlined, and further practical cases of digital health interventions are discussed.

Keywords

  • Digital health interventions
  • Non-communicable diseases
  • Digital health innovation

This is a preview of subscription content, access via your institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-76897-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   29.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    A non-communicable disease (NCD) is a disease that is not transmissible directly from one person to another.

  2. 2.

    Several passages of this chapter were taken from the habilitation thesis of Tobias Kowatsch submitted to the School of Management, University of St. Gallen, Switzerland, in January 2021.

References

  • Agrawal A (2020) Bridging digital health divides. Science 369(6507):1050–1052

    CrossRef  Google Scholar 

  • Bandura A (1991) Social cognitive theory of self-regulation. Organ Behav Hum Decis Process 50(2):248–287

    CrossRef  Google Scholar 

  • Banholzer N, Feuerriegel S, Fleisch E, Bauer G, Kowatsch T Computer mouse movements as an indicator of work stress: longitudinal observational field study. J Med Internet Res 23(4):e27121, 10.2196/27121

    Google Scholar 

  • Barata F, Tinschert P, Rassouli F, Steurer-Stey C, Fleisch E, Puhan MA, Brutsche M, Kotz D, Kowatsch T (2020) Automatic recognition, segmentation, and sex assignment of nocturnal asthmatic coughs and cough epochs in smartphone audio recordings: observational field study. J Med Internet Res 22(7)

    Google Scholar 

  • Bérubé C, Schachner T, Keller R, Fleisch E, Wangenheim F, Barata F, Kowatsch T (2021) Voice-based conversational agents for the prevention and management of chronic and mental conditions: a systematic literature review. JMIR 23(3):e25933

    Google Scholar 

  • Boateng G, Kowatsch T (2020) Speech emotion recognition among elderly individuals using multimodal fusion and transfer learning. In: International conference on multimodal interaction (ICMI ’20). Virtual event, October 25–29. ACM, New York

    Google Scholar 

  • Boateng G, Sels L, Kuppens P, Hilpert P, Kowatsch T (2020) Speech emotion recognition among couples using the peak-end rule and transfer learning. In: International conference on multimodal interaction (ICMI ’20). Virtual event, October 25–29. ACM, New York

    Google Scholar 

  • Buttorff C, Ruder T, Bauman M (2017) Multiple chronic conditions in the United States. https://www.rand.org/pubs/tools/TL221.html. Accessed 6 Sept 2020

  • Chan SWT, Sapkota S, Mathews R, Zhang H, Nanayakkara S (2020) Prompto: investigating receptivity to prompts based on cognitive load from memory training conversational agent. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol 4, no 4, article 121

    Google Scholar 

  • Chen S, Kuhn M, Prettner K, Bloom DE (2018) The macroeconomic burden of noncommunicable diseases in the United States: estimates and projections. PLoS One 13(11):e0206702.

    Google Scholar 

  • Choi W, Park S, Kim D, Lim Y-k, Lee U (2019) Multi-stage receptivity model for mobile just-in-time health intervention. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol 3, no 2, article 39

    Google Scholar 

  • Coravos A, Khozin S, Mandl KD (2019) Developing and adopting safe and effective digital biomarkers to improve patient outcomes. Nat Digit Med 2:14

    Google Scholar 

  • FBI (2020) Telehealth: global market analysis, insights, and forecast, 2019-2027 by Fortune Business Insights. Fortune Business Insights

    Google Scholar 

  • FIDMD (2020) The fast-track process for digital health applications (Diga) according to section 139e Sgb V: a guide for manufacturers, service providers and users

    Google Scholar 

  • Fleisch E, Franz C, Herrmann A (2021) The digital Pill: what everyone should know about the future of our healthcare system. Emerald, Bingley

    Google Scholar 

  • Flückiger C, Del Re AC, Wampold BE, Horvath AO (2018) The alliance in adult psychotherapy: a meta-analytic synthesis. Psychotherapy 55(4):316–340

    CrossRef  Google Scholar 

  • Hajat C, Stein E (2018) The global burden of multiple chronic conditions: a narrative review. Prev Med Rep 12:284–293

    CrossRef  Google Scholar 

  • Haug S, Castro RP, Kwon M, Filler A, Kowatsch T, Schaub MP (2015) Smartphone use and smartphone addiction among young people in Switzerland. J Behav Addict 4(4):299–307

    CrossRef  Google Scholar 

  • Hekler EB, Rivera DE, Martin CA, Phatak SS, Freigoun MT, Korinek E, Klasnja P, Adams MA, Buman MP (2018) Tutorial for using control systems engineering to optimize adaptive mobile health interventions. J Med Internet Res 20(6):e214

    CrossRef  Google Scholar 

  • Holst C, Sukums F, Radovanovic D, Ngowi B, Noll J, Winkler AS (2020) Sub-Saharan Africa—the new breeding ground for global digital health. Lancet Digit Health 2(4):e160–e162

    CrossRef  Google Scholar 

  • Kahneman D (2012) Thinking, fast and slow. Penguin, London

    Google Scholar 

  • Kakarmath S, Esteva A, Arnaout R, Harvey H, Kumar S, Muse E, Dong F, Wedlund L, Kvedar J (2020) Best practices for authors of healthcare-related artificial intelligence manuscripts. NPJ Digit Med 3(1):134

    CrossRef  Google Scholar 

  • Katz DL, Frates EP, Bonnet JP, Gupta SK, Vartiainen E, Carmona RH (2018) Lifestyle as medicine: the case for a true health initiative. Am J Health Promot 32(6):1452–1458

    CrossRef  Google Scholar 

  • Khaturia M, Jha P, Karandikar A (2020) Connecting the unconnected: toward frugal 5g network architecture and standardization. IEEE Commun Stand Mag 4(2):64–71

    CrossRef  Google Scholar 

  • Knittle K, Heino M, Marques MM, Stenius M, Beattie M, Ehbrecht F, Hagger MS, Hardeman W, Hankonen N (2020) The compendium of self-enactable techniques to change and self-manage motivation and behaviour V.1.0. Nat Hum Behav 4(2):215–223

    CrossRef  Google Scholar 

  • Koch K, Liu S, Berger T, Wortmann F (2020) Towards the healing car: investigating the potential of psychotherapeutic in-vehicle interventions. In: European conference on information systems (ECIS). Virtual

    Google Scholar 

  • Kowatsch T, Otto L, Harperink S, Cotti A, Schlieter H (2019) A design and evaluation framework for digital health interventions. IT Inf Technol 61(5–6):253–263

    Google Scholar 

  • Kowatsch T, Schachner T, Harperink S, Dittler U, Xiao G, Stanger C, Oswald H, Fleisch E, von Wangenheim F, Möller A (2021a) Conversational agents as mediating social actors in chronic disease management involving healthcare professionals, patients, and family members: intervention design and results from a multi-site, single-arm feasibility study. J Med Internet Res 23(2):e25060

    Google Scholar 

  • Kowatsch T, Lohse K-M, Erb V, Schittenhelm L, Galliker H, Lehner R, Huang EM (2021b) Hybrid ubiquitous coaching: a novel combination of mobile and holographic conversational agents targeting adherence to home exercises. J Med Internet Res (JMIR) 23(2):e23612

    CrossRef  Google Scholar 

  • Kramer J-N, Künzler F, Mishra V, Presset B, Kotz D, Smith S, Scholz U, Kowatsch T (2019) Investigating Intervention components and exploring states of receptivity for a smartphone app to promote physical activity: study protocol of the Ally Micro-Randomized Trial. JMIR Res Protoc 8(1)

    Google Scholar 

  • Kramer J, Künzler F, Mishra V, Smith SN, Kotz DF, Scholz U, Fleisch E, Kowatsch T (2020) Which components of a smartphone walking app help users to reach personalized step goals? Results from an optimization trial. Ann Behav Med 54(7):518–528

    CrossRef  Google Scholar 

  • Kraus M, Feuerriegel S, Fleisch E, Kowatsch T, Laimer M, Stettler C, Wortmann F, Züger T (2018) Machine learning based hypoglycemia recognition from driving patterns in individuals with diabetes mellitus. In: 2018 INFORMS annual meeting phoenix. INFORMS, Phoenix, AZ

    Google Scholar 

  • Künzler F, Kramer J, Kowatsch T (2017) Efficacy of mobile context-aware notification management systems: a systematic literature review and meta-analysis. In: IEEE 13th international conference on wireless and mobile computing, networking and communications (WiMob). IEEE, Rome, Italy, pp 131–138

    Google Scholar 

  • Künzler F, Mishra V, Kramer J-N, Kotz D, Fleisch E, Kowatsch T (2019) Exploring the state-of-receptivity for Mhealth interventions. In: The proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol 3, no 4, article 140

    Google Scholar 

  • Kvedar JC, Fogel AL, Elenko E, Zohar D (2016) Digital medicine’s march on chronic disease. Nat Biotechnol 34(3):239–246

    CrossRef  Google Scholar 

  • Leahey TM, Gorin AA, Wyckoff E, Denmat Z, O’Connor K, Field C, Dunton GF, Gunstad J, Huedo-Medina TB, Gilder C (2020) Episodic future thinking, delay discounting, and exercise during weight loss maintenance: the pace trial. Health Psychol 39(9):796–805

    CrossRef  Google Scholar 

  • Lukic Y, Klein S, Brügger V, Keller O, Fleisch E, Kowatsch T (2021) The impact of a gameful breathing training visualization on intrinsic experiential value, perceived effectiveness, and engagement intentions: between-subject online experiment. J Med Internet Res. Preprints. doi:10.2196/preprints.22803

    Google Scholar 

  • Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, Meinow B, Fratiglioni L (2011) Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev 10(4):430–439

    CrossRef  Google Scholar 

  • Maritsch M, Föll S, Lehmann V, Bérubé C, Kraus M, Feuerriegel S, Kowatsch T, Züger T, Stettler C, Fleisch E, Wortmann F (2020) Towards wearable-based hypoglycemia detection and warning in diabetes. In: Extended abstracts of the 2020 CHI conference on human factors in computing systems. Association for Computing Machinery, Honolulu, HI, pp 1–8

    Google Scholar 

  • Mishra V, Künzler F, Kramer J, Fleisch E, Kowatsch T, Kotz DF (2021) Detecting receptivity for mhealth interventions in the natural environment. The proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies (IMWUT), vol 5, no 2, article 74. doi:10.1145/3463492

    Google Scholar 

  • Murphy A, Palafox B, Walli-Attaei M, Powell-Jackson T, Rangarajan S, Alhabib KF, Avezum AJ, Calik KBT, Chifamba J, Choudhury T, Dagenais G, Dans AL, Gupta R, Iqbal R, Kaur M, Kelishadi R, Khatib R, Kruger IM, Kutty VR, Lear SA, Li W, Lopez-Jaramillo P, Mohan V, Mony PK, Orlandini A, Rosengren A, Rosnah I, Seron P, Teo K, Tse LA, Tsolekile L, Wang Y, Wielgosz A, Yan R, Yeates KE, Yusoff K, Zatonska K, Hanson K, Yusuf S, McKee M (2020) The household economic burden of non-communicable diseases in 18 countries. BMJ Global Health 5(2):e002040

    CrossRef  Google Scholar 

  • Nahum-Shani I, Hekler EB, Spruijt-Metz D (2015) Building health behavior models to guide the development of just-in-time adaptive interventions: a pragmatic framework. Health Psychol 34(suppl):1209–1219

    CrossRef  Google Scholar 

  • Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, Murphy SA (2018) Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med 52(6):446–462

    CrossRef  Google Scholar 

  • Newman D, Tong M, Levine E, Kishore S (2020) Prevalence of multiple chronic conditions by U.S. State and Territory, 2017. PLoS One 15(5):e0232346

    Google Scholar 

  • Papadopoulos I, Koulouglioti C, Lazzarino R, Ali S (2020) Enablers and barriers to the implementation of socially assistive humanoid robots in health and social care: a systematic review. BMJ Open 10(1):e033096

    CrossRef  Google Scholar 

  • Patel NA, Butte AJ (2020) Characteristics and challenges of the clinical pipeline of digital therapeutics. NPJ Digit Med 3(1):159

    Google Scholar 

  • PB (2020) Emerging tech research report Q2 2020: Retail health and wellness teach by pitchbook. Pitchbook

    Google Scholar 

  • Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358

    CrossRef  Google Scholar 

  • Rassouli F, Tinschert P, Barata F, Steurer-Stey C, Fleisch E, Puhan M, Baty F, Kowatsch T, Brutsche M (2020) Characteristics of asthma-related nocturnal cough: a potential new digital biomarker. J Asthma Allergy 13:649–657

    CrossRef  Google Scholar 

  • Renders CM, Valk GD, Griffin SJ, Wagner E, van Eijk JT, Assendelft WJJ (2000) Interventions to improve the management of diabetes mellitus in primary care, outpatient and community settings. Cochrane Database Syst Rev 4:1–140. CD001481

    Google Scholar 

  • RH (2020) Rocket health 2020 market insights report: chasing a new equilibrium

    Google Scholar 

  • Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I, Abdulkader RS, Abebe HT, Abebe M, Abebe Z, Abejie AN, Abera SF, Abil OZ, Abraha HN, Abrham AR et al (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159):1736–1788

    CrossRef  Google Scholar 

  • Rüegger D, Stieger M, Nißen MK, Allemand M, Fleisch E, Kowatsch T (2020) How are personality states associated with smartphone data? Eur J Pers 34(5):687–713

    CrossRef  Google Scholar 

  • Ryan RM, Deci EL (2017) Self-determination theory—basic psychological needs in motivation, development, and wellness. Guilford, New York

    CrossRef  Google Scholar 

  • Schachner T, Keller R, Wangenheim F (2020) Artificial intelligence-based conversational agents for chronic conditions: systematic literature review. J Med Internet Res 22(9):e20701

    Google Scholar 

  • Shezan FH, Hu H, Wang G, Tian Y (2020) Verhealth: vetting medical voice applications through policy enforcement. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol 4, no 4, article 153

    Google Scholar 

  • Shih C-H, Tomita N, Lukic YX, Reguera ÁH, Fleisch E, Kowatsch T (2019) Breeze: smartphone-based acoustic real-time detection of breathing phases for a gamified biofeedback breathing training. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol 3, no 4, article 152

    Google Scholar 

  • Sim I (2019) Mobile devices and health. N Engl J Med 381(10):956–968

    CrossRef  Google Scholar 

  • Tinschert P, Rassouli F, Barata F, Steurer-Stey C, Fleisch E, Puhan M, Kowatsch T, Brutsche M (2020) Nocturnal cough and sleep quality to assess asthma control and predict attacks. J Asthma Allergy 13:669–678

    CrossRef  Google Scholar 

  • Tudor Car L, Ardhithy Dhinagaran D, Kyaw BM, Kowatsch T, Joty SR, Theng YL, Atun R (2020) Conversational agents in health care: a scoping review and conceptual analysis. J Med Internet Res 22(8):e17158

    Google Scholar 

  • Vandenberghe D, Albrecht J (2020) The financial burden of non-communicable diseases in the European Union: a systematic review. Eur J Public Health 30(4):833–839

    CrossRef  Google Scholar 

  • WHO (2020) Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization, Geneva

    Google Scholar 

  • Zhan A, Mohan S, Tarolli C, Schneider RB, Adams JL, Sharma S, Elson MJ, Spear KL, Glidden AM, Little MA, Terzis A, Dorsey ER, Saria S (2018) Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol 75(7):876–880

    CrossRef  Google Scholar 

  • Zhang CQ, Zhang R, Schwarzer R, Hagger MS (2019) A meta-analysis of the health action process approach. Health Psychol 38(7):623–637

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kowatsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kowatsch, T., Fleisch, E. (2021). Digital Health Interventions. In: Gassmann, O., Ferrandina, F. (eds) Connected Business. Springer, Cham. https://doi.org/10.1007/978-3-030-76897-3_4

Download citation