Skip to main content

On Decomposition of Embedded Prismatoids in \(\mathbb {R}^3\) Without Additional Points

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 143))

  • 614 Accesses

Abstract

This paper considers embedded three-dimensional prismatoids. A subclass of this family is twisted prisms, which includes the family of non-triangulable Schönhardt polyhedra (Schönhardt, Math Ann 98:309–312, 1928; Rambau, On a generalization of Schönhardt’s polyhedron. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, vol. 52, pp. 501–516. MSRI Publications, Chicago, 2005). We call a prismatoid decomposable if it can be cut into two smaller prismatoids (which have smaller volumes) without using additional points. Otherwise, it is indecomposable. The indecomposable property implies the non-triangulable property of a prismatoid but not vice versa. In this paper, we prove two basic facts about the decomposability of embedded prismatoid in \(\mathbb {R}^3\) with convex bases. Let P be such a prismatoid, call an edge interior edge of P if its both endpoints are vertices of P, and its interior lies inside P. Our first result is a condition to characterize indecomposable twisted prisms. It states that a twisted prism is indecomposable without additional points if and only if it allows no interior edge. Our second result shows that any embedded prismatoid in \(\mathbb {R}^3\) with convex base polygons can be decomposed into the union of two sets (one of them may be empty): a set of tetrahedra and a set of indecomposable twisted prisms, such that all elements in these two sets have disjoint interiors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and hereafter: cupola figure (from Wikipedia) used under CC~BY-SA~3.0; antiprisms created with Robert Webb’s Stella software, https://www.software3d.com/Stella.php; Jessen’s polyhedron Ⓒ 2021 Springer Nature Switzerland AG.

References

  1. Bagemihl, F.: On indecomposable polyhedra. Am. Math. Month. 55(7), 411–413 (1948)

    Article  MathSciNet  Google Scholar 

  2. Bezdek, A., Carrigan, B.: On nontriangulable polyhedra. Contrib. Algebra Geom. 57(1), 51–66 (2016). http://dx.doi.org/10.1007/s13366-015-0248-4

    Article  MathSciNet  Google Scholar 

  3. Chazelle, B.: Convex partition of polyhedra: a lower bound and worst-case optimal algorithm. SIAM J. Comput. 13(3), 488–507 (1984)

    Article  MathSciNet  Google Scholar 

  4. Chew, P.L.: Constrained Delaunay triangulation. Algorithmica 4, 97–108 (1989)

    Article  MathSciNet  Google Scholar 

  5. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22(3), 333–346 (1999). http://dx.doi.org/10.1007/PL00009464

    Article  MathSciNet  Google Scholar 

  6. Jessen, B.: Orthogonal icosahedra. Nordisk Mat. Tidskr 15, 90–96 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Kern, W.F., Bland, J.R.: Solid Mensuration. Wiley, London (1934)

    MATH  Google Scholar 

  8. Lee, D.T., Lin, A.K.: Generalized delaunay triangulations for planar graphs. Discrete Comput. Geom. 1, 201–217 (1986)

    Article  MathSciNet  Google Scholar 

  9. Meisters, G.H.: Polygons have ears. Am. Math. Month. 82(6), 648–651 (1975). http://www.jstor.org/stable/2319703

    Article  MathSciNet  Google Scholar 

  10. Rambau, J.: On a generalization of Schönhardt’s polyhedron. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, vol. 52, pp. 501–516. MSRI Publications, Chicago. (2005)

    Google Scholar 

  11. Ruppert, J., Seidel, R.: On the difficulty of triangulating three-dimensional nonconvex polyhedra. Discrete Comput. Geom. 7, 227–253 (1992)

    Article  MathSciNet  Google Scholar 

  12. Schönhardt, E.: Über die zerlegung von dreieckspolyedern in tetraeder. Math. Ann. 98, 309–312 (1928)

    Article  MathSciNet  Google Scholar 

  13. Si, H., Goerigk, N.: Generalised Bagemihl polyhedra and a tight bound on the number of interior Steiner points. Comput. Aid. Des. 103, 92–102 (2018). https://doi.org/10.1016/j.cad.2017.11.009. http://www.sciencedirect.com/science/article/pii/S0010448517302324

  14. Wikipedia contributors: prismatoid (2019). https://en.wikipedia.org/wiki/Prismatoid. Accessed 20 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Si .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Si, H. (2021). On Decomposition of Embedded Prismatoids in \(\mathbb {R}^3\) Without Additional Points. In: Garanzha, V.A., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-76798-3_6

Download citation

Publish with us

Policies and ethics