Skip to main content

Adaptive Grids for Non-monotone Waves and Instabilities in a Non-equilibrium PDE Model

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 143))

  • 628 Accesses

Abstract

In this paper, the importance of both the analysis and computation is emphasized, in relation to a bifurcation problem in a non-equilibrium Richard’s equation from hydrology. The extension of this PDE model for the water saturation S, to take into account additional dynamic memory effects gives rise to an extra third-order mixed space-time derivative term in the PDE of the form τ ∇⋅ [f(S)∇(S t)]. In one space dimension, travelling wave analysis is able to predict the formation of steep non-monotone waves depending on the parameter τ. In two space dimensions, the parameters τ and the frequency ω of a small perturbation term, predict that the waves may become unstable, thereby initiating so-called gravity-driven fingering structures. For the numerical experiments of the time-dependent PDE model, we have used a sophisticated adaptive grid r-refinement technique based on a scaled monitor function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandrini, G., Nesi, V.: Univalent σ-harmonic mappings. Arch. Rational Mech. Anal. 158, 155–171 (2001)

    Article  MathSciNet  Google Scholar 

  2. Budd, C.J., Huang W., Russell R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241 (2009)

    Article  MathSciNet  Google Scholar 

  3. Clement, Ph., Hagmeijer, R., Sweers, G.: On the invertibility of mappings arising in 2D grid generation problems. Numer. Math. 73(1), 37–52 (1996)

    Article  MathSciNet  Google Scholar 

  4. Cuesta, C., van Duijn, C.J., Hulshof, J.: Infiltration in porous media with dynamic capillary pressure: travelling waves. Eur. J. Appl. Math 11, 397 (2000)

    Article  MathSciNet  Google Scholar 

  5. DiCarlo, D.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40, W04215 (2004)

    Article  Google Scholar 

  6. Egorov, A.G., Dautov, R.Z., Nieber, J.L., Sheshukov, A.Y.: Stability analysis of gravity-driven infiltrating flow. Water Resour. Res. 39, 1266 (2003)

    Article  Google Scholar 

  7. Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure on porous media. Water Resour. Res. 29, 3389–3405 (1993)

    Article  Google Scholar 

  8. Hilfer, R., Doster, F., Zegeling, P.A. Nonmonotone saturation profiles for hydrostatic equilibrium in homogeneous porous media. Vadose Zone J. 11(3), 201 (2012)

    Article  Google Scholar 

  9. Hu, G., Zegeling, P.A.: Simulating finger phenomena in porous media with a moving finite element method. J. Comput. Phys. 230(8), 3249–3263 (2011)

    Article  MathSciNet  Google Scholar 

  10. Huang, W., Russell, R.D.: Analysis of moving mesh partial differential equations with spatial smoothing. SIAM J. Numer. Anal. 34, 1106–1126 (1997)

    Article  MathSciNet  Google Scholar 

  11. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)

    Book  Google Scholar 

  12. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (1993)

    MATH  Google Scholar 

  13. Kampitsis, A.E., Adam, A., Salinas, P., Pain, C.C., Muggeridge, A.H., Jackson, M.D.: Dynamic adaptive mesh optimisation for immiscible viscous fingering. Comput. Geosci. 24, 1221–1237 (2020)

    Article  MathSciNet  Google Scholar 

  14. Nicholl, M.J., Glass, R.J.: Infiltration into an analog fracture: experimental observations of gravity-driven fingering. Vadose Zone J. 4, 1123–1151 (2005)

    Article  Google Scholar 

  15. Nieber, J.L., Dautov, R.Z., Egorov, A.G., Sheshukov, A.Y.: Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. Transp. Porous Media 58, 147–172 (2005)

    Article  MathSciNet  Google Scholar 

  16. Petzold, A.G.: A description of DASSL: a differential/algebraic system solver. In: Stepleman, R.S., et al. (eds.) IMACS Trans. Sci. Comput., pp. 65–68. North-Holland, Amsterdam (1983)

    Google Scholar 

  17. Ruuth, S.J.: Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34, 148–176 (1995)

    Article  MathSciNet  Google Scholar 

  18. Tang, T., Tang, H.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)

    Article  MathSciNet  Google Scholar 

  19. van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1d hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216, 526–546 (2006)

    Article  MathSciNet  Google Scholar 

  20. van Dam, A., Zegeling, P.A.: Balanced monitoring of flow phenomena in moving mesh methods. Commun. Comput. Phys. 7, 138–170 (2010)

    Article  MathSciNet  Google Scholar 

  21. van Duijn, C.J., Hassanizadeh, S.M., Pop, I.S., Zegeling, P.A.: Non-equilibrium models for two-phase flow in porous media: the occurrence of saturation overshoot. In: Proc. of the 5th Int. Conf. on Appl. of Porous Media, Cluj-Napoca (2013)

    Google Scholar 

  22. van Duijn, C.J., Fan, Y., Peletier, L.A., Pop, I.S.: Travelling wave solutions for a degenerate pseudo-parabolic equation modelling two-phase flow in porous media. Nonlinear Anal. Real World Appl. 14, 1361–1383 (2013)

    Article  MathSciNet  Google Scholar 

  23. Zegeling, P.A.: On resistive MHD models with adaptive moving meshes. J. Sci. Comput. 24(2), 263–284 (2005)

    Article  MathSciNet  Google Scholar 

  24. Zegeling, P.A.: Theory and application of adaptive moving grid methods. In: Adaptive Computations: Theory and Algorithms, pp. 279–332. Science Press, Beijing (2007)

    Google Scholar 

  25. Zegeling, P.A., Lagzi, I., Izsak, F.: Transition of Liesegang precipitation systems: simulations with an adaptive grid PDE method. Commun. Comput. Phys. 10(4), 867–881 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Zegeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zegeling, P.A. (2021). Adaptive Grids for Non-monotone Waves and Instabilities in a Non-equilibrium PDE Model. In: Garanzha, V.A., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-76798-3_11

Download citation

Publish with us

Policies and ethics