Skip to main content

Application of Deep Learning in Recurrence Plots for Multivariate Nonlinear Time Series Forecasting

  • Chapter
  • First Online:
Advances in Machine Learning/Deep Learning-based Technologies

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 23))

  • 700 Accesses

Abstract

We present a framework for multivariate nonlinear time series forecasting that utilizes phase space image representations and deep learning. Recurrence plots (RP) are a phase space visualization tool used for the analysis of dynamical systems. This approach takes advantage of recurrence plots that are used as input image representations for a class of deep learning algorithms called convolutional neural networks. We show that by leveraging recurrence plots with optimal embedding parameters, appropriate representations of underlying dynamics are obtained by the proposed autoregressive deep learning model to produce forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4(9), 973–977 (1987). https://doi.org/10.1209/0295-5075/4/9/004

  2. M.C. Casdagli, Recurrence plots revisited. Phys. D 108(1–2), 12–44 (1997). https://doi.org/10.1016/S0167-2789(97)82003-9

  3. M. Thiel, M.C. Romano, J. Kurths, How much information is contained in a recurrence plot? Phys. Lett. A 330(2004), 343–349 (2004). https://doi.org/10.1016/j.physleta.2004.07.050

  4. W. Liebert, H.G. Schuster, Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. A 142(2, 3), 107–111 (1989). https://doi.org/10.1016/0375-9601(89)90169-2

  5. A.M. Fraser, H.G. Swinney, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986). https://doi.org/10.1103/PhysRevA.33.1134

  6. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403 (1992). https://doi.org/10.1103/PhysRevA.45.3403

  7. J.S. Iwanski, E. Bradley, Recurrence plots of experimental data: to embed or not to embed. Chaos 8, 861–871 (1998). https://doi.org/10.1063/1.166372

  8. J. Gao, H. Cai, On the structures and quantification of recurrence plots. Phys. Lett. A 270(1–2), 75–87 (2000). https://doi.org/10.1016/S0375-9601(00)00304-2

  9. T. Gautama, D.P. Mandic, M.M. Van Hulle, A differential entropy based method for determining the optimal embedding parameters of a signal, in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, Proceedings, (ICASSP ’03) (Hong Kong, 2003), pp. VI–29. https://doi.org/10.1109/ICASSP.2003.1201610

  10. N. Marwan, J. Kurths, P. Saparin, Generalised recurrence plot analysis for spatial data. Phys. Lett. A 360(2007), 545–551 (2007). https://doi.org/10.1209/0295-5075/4/9/004

  11. A. Sipers, P. Borm, R. Peeters, On the unique reconstruction of a signal from its unthresholded recurrence plot. Phys. Lett. A 375(2011), 2309–2321 (2011). https://doi.org/10.1016/j.physleta.2011.04.040

  12. O.A.B. Penatti, M.F.S. Santos, Human activity recognition from mobile inertial sensors using recurrence plots (2017). ArXiv. Availablehttps://arxiv.org/pdf/2004.13408.pdf. Accessed 31 Aug 2020

  13. N. Marwan, A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164(2008), 3–12 (2008). https://doi.org/10.1209/0295-5075/4/9/004

  14. B. Lim, S. Zohren, Time series forecasting with deep learning: a survey (2020). ArXiv. Available, https://arxiv.org/pdf/2004.13408.pdf. Accessed 24 Aug 2020

  15. J.M. Sotoca, J.S. Sánchez, R.A. Mollineda, A review of data complexity measures and their applicability to pattern classification problems, in Actas del III Taller Nacional de Mineríade Datos y Aprendizaje (TAMIDA, 2005), pp. 77–83

    Google Scholar 

  16. L. Li, Y.S. Abu-Mostafa, Data complexity in machine learning. Caltech Computer Science Technical Reports (2006). https://doi.org/10.7907/Z9319SW2

  17. W.A. Brock, J.A. Scheinkman, W.D. Dechert, B. LeBaron, A test for independence based on the correlation dimension. Econ. Rev. 15(3), 197–235 (1996)

    Google Scholar 

  18. J. Belaire-Franch, D. Contreras, How to compute the BDS test: a software comparison. J. Appl. Econ. 17, 691–699 (2002). https://doi.org/10.1002/jae.679

  19. E. Zivot, Nonlinear time series models (n.d.). https://faculty.washington.edu/ezivot/econ584/notes/nonlinear.pdf. Accessed 24 Aug 2020

  20. R.J. Hyndman, G. Athanasopoulos, ARIMA Models, in Forecasting: Principles and Practice, 2nd edn. (OTexts, Melbourne, Australia, 2018), pp. 221–274

    Google Scholar 

  21. S.S. Rao, A course in time series analysis (2020). https://www.stat.tamu.edu/~suhasini/teaching673/time_series.pdf. Accessed 29 Aug 2020

  22. B. Pesaran, Spectral analysis for neural signals (2020). https://neurophysics.ucsd.edu/courses/physics_173_273/SfN_Short_Course_c1.pdf. Accessed 29 Aug 2020

  23. Z. Wang, T. Oates, Visual interpretation of hand gestures for human computer interaction: a review, in Paper presented at the Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. (Buenos Aires, Argentina, 2015). 25–31 July 2015

    Google Scholar 

  24. N. Hatami, Y. Gavet, J. Debayle, Paper presented at the Tenth International Conference on Machine Visio (Vienna, Austria, 2017). 13–15 Nov 2017

    Google Scholar 

  25. Y. Hsueh, V.R. Ittangihala, W. Wu et al., Condition monitor system for rotation machine by CNN with recurrence plot. Energies 12, 3221 (2019). https://doi.org/10.3390/en12173221

    Article  Google Scholar 

  26. Z. Zhao, Y. Zhang, Z. Comert, Y. Deng, Computer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network. Front. Physiol. (2019). https://doi.org/10.3389/fphys.2019.00255

    Article  Google Scholar 

  27. E. Garcia-Ceja, M.Z. Uddin, J. Torresen, Classification of recurrence plot’ distance matrices with a convolutional neural network for activity recognition. Procedia Comput. Sci. 130, 157–163 (2018). https://doi.org/10.1016/j.procs.2018.04.025

  28. S.A.A. Ojeda, G.A. Solano, E.C. Peramo, Multivariate time series imaging for short-term precipitation forecasting using convolutional neural networks, in 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (2020). https://doi.org/10.1109/icaiic48513.2020.9065238

  29. R.J. Hyndman, Y. Khandakar, Automatic time series forecasting: the forecast package for R. J. Stat. Softw. (2008). https://doi.org/10.18637/jss.v027.i03

    Article  Google Scholar 

  30. L. Cao, Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D: Nonlinear Phenom. 110, 43–50 (1997). https://doi.org/10.1016/s0167-2789(97)00118-8

    Article  MATH  Google Scholar 

  31. E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3, 263–286 (2001). https://doi.org/10.1007/pl00011669

    Article  MATH  Google Scholar 

  32. N. Marwan, How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurc. Chaos 21, 1003–1017 (2011). https://doi.org/10.1142/s0218127411029008

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Zhang, Z. Lipton, M. Li, et al., Convolutional neural networks, in Convolutional Neural Networks—Dive into Deep Learning 0.14.3 documentation (n.d.). http://d2l.ai/chapter_convolutional-neural-networks/index.html. Accessed 31 Aug 2020

  34. I. Goodfellow, Y. Bengio, A. Courville, Convolutional Networks, in Deep Learning. (The MIT Press, Cambridge, MA, 2017), pp. 330–371

    MATH  Google Scholar 

  35. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift 37, 448–456 (2015)

    Google Scholar 

  36. N. Srivastava, G. Hinton, A. Krizhevsky, Dropout: a simple way to prevent neural networks from overfitting 15(56), 1929–1958 (2014)

    Google Scholar 

  37. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/cvpr.2016.90

  38. L. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). https://doi.org/10.1109/cvpr.2015.7298965

  39. I.F. Hassan, B. Lucas, G. Forestier, C. Pelletier, et al., InceptionTime: finding alexnet for time series classification (2019). arXiv:1909.04939

  40. C.W. Tan, C. Bergmeir, F. Petitjean, G.I. Webb, Time series regression (2020). arXiv:2006.12672

  41. J. Borkowski, Blocked designs (2014). http://www.math.montana.edu/jobo/thainp/ksampa.pdf. Accessed 31 Aug 2020

  42. J. Demsar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Solano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojeda, S.A.A., Peramo, E.C., Solano, G.A. (2022). Application of Deep Learning in Recurrence Plots for Multivariate Nonlinear Time Series Forecasting. In: Tsihrintzis, G.A., Virvou, M., Jain, L.C. (eds) Advances in Machine Learning/Deep Learning-based Technologies. Learning and Analytics in Intelligent Systems, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-76794-5_9

Download citation

Publish with us

Policies and ethics