Skip to main content

Labeled Graphs in Life Sciences—Two Important Applications

  • Chapter
  • First Online:
Graph-Based Modelling in Science, Technology and Art

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 107))

  • 423 Accesses

Abstract

Life sciences and mathematics are usually considered as quite distant areas of research. But in fact there are close relationships between them, especially in recent years, when computational biology and bioinformatics rapidly evolve. The spectacular developments in the area of biological sciences, particularly those related to sequencing genomes, made evident that an application of formal mathematical and computer science methods is necessary for further discovering the nature of the living world. Among many areas of mathematics being useful in this context, graph theory plays especially important role. It is also worth to remember that, despite the fact that graphs are intensively applied in biology during last three decades, they were used in chemistry (being a basement of molecular biology) more than a century ago. In this chapter a short review of selected applications of labeled graphs in biology and chemistry is given. Some graph theory problems concerning molecules of chemical compounds and DNA sequencing are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akutsu, T., Nagamochi, H.: Comparison and enumeration of chemical graphs. Comput. Struct. Biotechnol. J. 5(6), e201302,004 (2013)

    Google Scholar 

  2. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: An intermediate level of abstraction for computational systems chemistry. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375(2109), 20160,354 (2017)

    Google Scholar 

  3. Badertscher, M., Korytko, A., Schulz, K.P., Madison, M., Munk, M.E., Portmann, P., Junghans, M., Fontana, P., Pretsch, E.: Assemble 2.0: a structure generator. Chemometrics Intell. Lab. Syst. 51(1), 73–79 (2000)

    Google Scholar 

  4. Bains, W., Smith, G.: J. Theor. Biol. 135, 303–307 (1988)

    Article  Google Scholar 

  5. Berge, C.: Graphs and Hypergraphs. North-Holland Publishing Company, London (1973)

    Google Scholar 

  6. Biggs, N., Lloyd, E.K., Wilson, R.J.: Graph Theory, pp. 1736–1936. Oxford University Press, Oxford (1986)

    Google Scholar 

  7. Blazewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.: Sequencing by hybridization with isothermic oligonucleotide libraries. Discrete Appl. Math. 145, 40–51 (2004)

    Article  MathSciNet  Google Scholar 

  8. Blazewicz, J., Hertz, A., Kobler, D., de Werra, D.: On some properties of DNA graphs. Discrete Appl. Math. 98(1–2), 1–19 (1999)

    Article  MathSciNet  Google Scholar 

  9. Blazewicz, J., Kasprzak, M.: Complexity of DNA sequencing by hybridization. Theor. Compu. Sci. 290, 1459–1473 (2003)

    Article  MathSciNet  Google Scholar 

  10. Blazewicz, J., Kasprzak, M.: Computational complexity of isothermic DNA sequencing by hybridization. Discrete Appl. Math. 154, 718–729 (2006)

    Article  MathSciNet  Google Scholar 

  11. Blazewicz, J., Kasprzak, M., Kierzynka, M., Frohmberg, W., Swiercz, A., Wojciechowski, P., Zurkowski, P.: Graph algorithms for DNA sequencing—origins, current models and the future. Eur. J. Oper. Res. 264, 799–812 (2018)

    Article  MathSciNet  Google Scholar 

  12. Blazewicz, J., Kasprzak, M., Leroy-Beaulieu, B., de Werra, D.: Finding Hamiltonian circuits in quasi-adjoint graphs. Discrete Appl. Math. 156, 2573–2580 (2008)

    Article  MathSciNet  Google Scholar 

  13. Böcker, S., Lipták, Z., Martin, M., Pervukhin, A., Sudek, H.: DECOMP—from interpreting mass spectrometry peaks to solving the money changing problem. Bioinformatics 24(4), 591–593 (2008)

    Article  Google Scholar 

  14. Brown, H., Hjelmeland, L., Masinter, L.: Constructive graph labeling using double cosets. Discrete Math. 7(1–2), 1–30 (1974)

    Article  MathSciNet  Google Scholar 

  15. Brown, H., Masinter, L.: An algorithm for the construction of the graphs of organic molecules. Stanford University (1973)

    Google Scholar 

  16. de Bruijn, N.: A combinatorial problem. Proc. Koninklijke Nederlandse Akademie van Wetenschappen 49, 758–764 (1946)

    Google Scholar 

  17. Faradzhev, I.: Constructive enumeration of combinatorial objects. problèmes combinatoires et théorie des graphes 260, 131–135 (1978)

    Google Scholar 

  18. Faulon, J., Visco, D.P., Roe, D.: Enumerating molecules. Rev. Comput. Chem. 21, 209 (2005)

    Article  Google Scholar 

  19. Faulon, J.L.: On using graph-equivalent classes for the structure elucidation of large molecules. J. Chem. Inform. Comput. Sci. 32(4), 338–348 (1992)

    Article  Google Scholar 

  20. Faulon, J.L.: Isomorphism, automorphism partitioning, and canonical labeling can be solved in polynomial-time for molecular graphs. J. Chem. Inform. Comput. Sci. 38(3), 432–444 (1998)

    Article  Google Scholar 

  21. García-Domenech, R., Gálvez, J., de Julián-Ortiz, J.V., Pogliani, L.: Some new trends in chemical graph theory. Chem. Rev. 108(3), 1127–1169 (2008)

    Article  Google Scholar 

  22. Gugisch, R., Kerber, A., Kohnert, A., Laue, R., Meringer, M., Rücker, C., Wassermann, A.: Molgen 5.0, a molecular structure generator. In: Advances in Mathematical Chemistry and Applications, pp. 113–138. Elsevier, Amsterdam (2015)

    Google Scholar 

  23. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. i. J. Soc. Ind. Appl. Math. 10(3), 496–506 (1962)

    Google Scholar 

  24. Hao, J.: The adjoints of DNA graphs. J. Math. Chem. 37, 333–346 (2005)

    Article  MathSciNet  Google Scholar 

  25. Hsieh, S.M., Hsu, C.C., Hsu, L.F.: Efficient method to perform isomorphism testing of labeled graphs. In: International Conference on Computational Science and Its Applications, pp. 422–431. Springer, Berlin (2006)

    Google Scholar 

  26. Kasprzak, M.: Classification of de Bruijn-based labeled digraphs. Discrete Appl. Math. 234, 86–92 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kozak, A., Głowacki, T., Formanowicz, P.: On a generalized model of labeled graphs. Discrete Appl. Math. 161(13–14), 1818–1827 (2013)

    Article  MathSciNet  Google Scholar 

  28. Li, X., Zhang, H.: Embedding on alphabet overlap digraphs. J. Math. Chem. 47, 62–71 (2010)

    Article  MathSciNet  Google Scholar 

  29. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

    Article  MathSciNet  Google Scholar 

  30. Lysov, Y., Florentiev, V., Khorlin, A., Khrapko, K., Shik, V., Mirzabekov, A.: Determination of the nucleotide sequence of DNA using hybridization with oligonucleotides. A new method. Doklady Akademii Nauk SSSR 303, 1508–1511 (1988)

    Google Scholar 

  31. Maxam, A., Gilbert, W.: A new method for sequencing DNA. Proc. Nat. Acad. Sci. USA 74, 560–564 (1977)

    Article  Google Scholar 

  32. Minkin, V.I.: Glossary of terms used in theoretical organic chemistry. Pure Appl. Chem. 71(10), 1919–1981 (1999)

    Article  Google Scholar 

  33. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., Fodor, S.: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Nat. Acad. Sci. 91(11), 5022–5026 (1994)

    Article  Google Scholar 

  34. Peironcely, J.E., Rojas-Chertó, M., Fichera, D., Reijmers, T., Coulier, L., Faulon, J.L., Hankemeier, T.: Omg: open molecule generator. J. cheminformatics 4(1), 21 (2012)

    Article  Google Scholar 

  35. Pevac, S., Crundwell, G.: Polya’s isomer enumeration method: a unique exercise in group theory and combinatorial analysis for undergraduates. J. Chem. Educ. 77(10), 1358 (2000)

    Article  Google Scholar 

  36. Pevzner, P.: l-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7, 63–73 (1989)

    Article  Google Scholar 

  37. Pogliani, L.: From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors. Chem. Rev. 100(10), 3827–3858 (2000)

    Article  Google Scholar 

  38. Polya, G., Read, R.C.: Combinatorial enumeration of groups, graphs, and chemical compounds. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  39. Read, R.C.: Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations. In: Annals of Discrete Mathematics, vol. 2, pp. 107–120. Elsevier, Amsterdam (1978)

    Google Scholar 

  40. Russell, S., Norvig, P.: Artificial intelligence: a modern approach (2002)

    Google Scholar 

  41. Sanger, F., Nicklen, S., Coulson, A.: DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA 74, 5463–5467 (1977)

    Article  Google Scholar 

  42. Southern, E.: Analyzing polynucleotide sequences. International patent application PCT/GB89/00460 (1988)

    Google Scholar 

  43. Sutherland, G.: Dendral—a computer program for generating and filtering chemical structures. Technical report, Department of Computer Science, Stanford University of California (1967)

    Google Scholar 

  44. Torán, J.: On the hardness of graph isomorphism. SIAM J. Comput. 33(5), 1093–1108 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Formanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Formanowicz, P., Kasprzak, M., Wawrzyniak, P. (2022). Labeled Graphs in Life Sciences—Two Important Applications. In: Zawiślak, S., Rysiński, J. (eds) Graph-Based Modelling in Science, Technology and Art. Mechanisms and Machine Science, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-030-76787-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76787-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76786-0

  • Online ISBN: 978-3-030-76787-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics