Skip to main content

Cartel Behaviour in an Exhaustible Resource Industry

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

  • 259 Accesses

Abstract

Under low-elasticity demand, a resource monopoly is supposed to be constrained either by the presence of competing participants in the market or by the existence of a substitute for the natural resource. In the presence of a competitive fringe, the cartel’s activity in an exhaustible resource industry violates the Herfindahl principle presented in Chap. 2 that an advantageous oil region depletes its resource stock before a disadvantageous region begins extraction. In the cartel-fringe models of resource industry considered in this chapter, the time sequencing of production dramatically changes and permits the case where the low-cost cartel and the high-cost fringe produce simultaneously. In the presence of a backstop technology, a perfect substitute provides a ceiling on the exhaustible resource price. In the model with such technology, the fringe fully exhausts its resource before the cartel becomes a monopoly that sells the resource at the backstop price. The cartel initially makes a strategic choice of resource allocation over time between the transition phase and the backstop phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • BP Statistical Review of World Energy – 2020 edition. https://nangs.org/analytics/bp-statistical-review-of-world-energy. Accessed 18 Nov 2020

  • Dasgupta P Stiglitz J (1975) Uncertainty and the rate of extraction under alternative arrangements. Institute of Mathematical Studies in the Soial Sciences (IMSSS), Techical report no. 179, Sep 1975

    Google Scholar 

  • Gilbert R (1978) Dominant firm pricing policy in a market for an exhaustible resource. Bell J Econ 9:385–395

    Article  Google Scholar 

  • Hoel M (1978) Resource extraction, substitute production, and monopoly. J Econ Theory 19:28–37

    Article  Google Scholar 

  • Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39:137–175

    Article  Google Scholar 

  • Lewis T, Schmalensee R (1980) On oligopolistic markets for non-renewable natural resources. Q J Econ 95(3):475–491

    Article  Google Scholar 

  • Newberry D (1981) Oil prices, cartels, and the problem of dynamic inconsistency. Econ J 91:617–646

    Article  Google Scholar 

  • Salant S (1976) Exhaustible resources and industrial structure: a Nash−Cournot approach to the world oil market. J Polit Econ 84(5):1079–1094

    Article  Google Scholar 

  • Smith J (2009) World oil: market or mayhem. J Econ Perspect 23:145–164

    Article  Google Scholar 

  • Stiglitz J (1976) Monopoly and the rate of extraction of exhaustible resources. Am Econ Rev 66(4):655–661

    Google Scholar 

  • Ulph AM, Folie GM (1980) Exhaustible resources and cartels: an intertemporal Cournot-Nash model. Can J Econ 13:645–658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Formula (9.11)

The solution for differential equation (9.10) is

$$ P(t)=\frac{\alpha +c}{2}+{w}_0{e}^{rt}=c+\frac{\alpha -c}{2}+{w}_0{e}^{rt}. $$
(9.51)

The terminal condition x(TM) = 0 implies that P(TM) = α, hence, from Eq. (9.51),

$$ \alpha =\frac{\alpha +c}{2}+{w}_0{e}^{r{T}_M} $$

and \( {w}_0=\frac{1}{2}\left(\alpha -c\right){e}^{-r{T}_M} \).

1.2 A.2 Condition (9.15)

The demand elasticity is \( \sigma (x)=-\mathcal{P}(x)/x{\mathcal{P}}^{\prime }(x) \) for the domain of x such that \( {\mathcal{P}}^{\prime }(x)<0 \). The derivative of demand elasticity is

$$ {\sigma}^{\prime }(x)=-\frac{x\mathcal{P}^{\prime }{(x)}^2-\mathcal{P}(x)\left({\mathcal{P}}^{\prime }(x)+x{\mathcal{P}}^{\prime \prime }(x)\right)}{{\left(x{\mathcal{P}}^{\prime }(x)\right)}^2}. $$

It is negative if, and only if,

$$ \frac{x{\mathcal{P}}^{\prime }(x)}{\mathcal{P}(x)}<1+\frac{x{\mathcal{P}}^{\prime \prime }(x)}{{\mathcal{P}}^{\prime }(x)}, $$
(9.52)

which implies

$$ 2+\frac{x{\mathcal{P}}^{\prime \prime }(x)}{{\mathcal{P}}^{\prime }(x)}>0, $$
(9.53)

because \( -x{\mathcal{P}}^{\prime }(x)/\mathcal{P}(x)<1 \) for ρ(x) > 0.

Consider the equation for the marginal revenue growth (9.8) with c = 0. On the one hand, \( \dot{\rho}(x)=\dot{\mathcal{P}}(x)+{\mathcal{P}}^{\prime }(x)\dot{x}+x{\mathcal{P}}^{\prime \prime }(x)\dot{x} \). On the other hand, \( \dot{x}=\dot{\mathcal{P}}(x)/{\mathcal{P}}^{\prime }(x) \). Hence, \( \dot{\rho}(x)=\dot{\mathcal{P}}(x)\left(2+x{\mathcal{P}}^{\prime \prime }(x)/{\mathcal{P}}^{\prime }(x)\right) \)and Eq. (9.8) is equivalent to

$$ \dot{\mathcal{P}}(x)=r\frac{\mathcal{P}(x)+x{\mathcal{P}}^{\prime }(x)}{2+x{\mathcal{P}}^{\prime \prime }(x)/{\mathcal{P}}^{\prime }(x)}. $$

Condition \( \dot{\mathcal{P}}(x)<r\mathcal{P}(x) \) holds for x > 0 if, and only if, \( \mathcal{P}(x)+x{\mathcal{P}}^{\prime }(x)<\mathcal{P}(x)\left(2+x{\mathcal{P}}^{\prime \prime }(x)/{\mathcal{P}}^{\prime }(x)\right) \), which is equivalent to (9.52), the necessary and sufficient condition for σ(x) < 0. Hence, condition σ(x) < 0 is necessary and sufficient for \( \dot{P}< rP \). Condition (9.53) is necessary and sufficient for \( {\rho}^{\prime }(x)=2{\mathcal{P}}^{\prime }(x)+x{\mathcal{P}}^{\prime \prime }(x)<0 \), hence σ(x) < 0 is sufficient for ρ(x) < 0.

1.3 A.3 Equation (9.24)

The general solution of differential equation (9.20) is

$$ {x}_b(t)=D-k{e}^{rt}, $$

where D = β−1(α − cb − Δc) and k is an unknown constant. From (9.23) we have:

$$ {\displaystyle \begin{array}{l}\beta {x}_a(t)=\beta \left(q(t)-{x}_b(t)\right)=\left(\alpha -{c}_b\right)\left(1-{e}^{r\left(t-{T}_b\right)}\right)-\beta D+\beta {ke}^{rt}\\ {}\kern6em =\beta {ke}^{rt}-\left(\alpha -{c}_b\right){e}^{r\left(t-{T}_b\right)}+\varDelta c.\end{array}} $$

The termination condition for the cartel is xa(Ta) = 0, implying that

$$ \beta k{e}^{r{T}_a}=\left(\alpha -{c}_b\right){e}^{r\left({T}_a-{T}_b\right)}-\Delta c\ \mathrm{or} $$
$$ \beta k{e}^{rt}=\left(\alpha -{c}_b\right){e}^{r\left(t-{T}_b\right)}-\Delta c{e}^{r\left(t-{T}_a\right)}. $$

Consequently, \( \beta {x}_a(t)=\Delta c-\Delta c{e}^{r\left(t-{T}_a\right)}=\Delta c\left(1-{e}^{r\left(t-{T}_a\right)}\right) \).

1.4 A.4 The Objective Function (9.39)

During the transition phase, t ≤ Tb, the cartel produces xa = y(P) − xb = Pσ − xb. The initial present value of the cartel’s rent during this phase is

$$ \underset{0}{\overset{T_b}{\int }}{e}^{- rt}P(t){x}_a(t) dt={P}_0\underset{0}{\overset{T_b}{\int }}\left(P{(t)}^{-\sigma }-{x}_b(t)\right) dt={P}_0\left(Q-{S}_b\right)={P}_0\left({S}_a-B\right) $$

due to (9.36) and the resource balance B = Sa + Sb − Q. During the backstop phase, Tb ≤ t ≤ Ta, the cartel’s output is xa(t) ≡ Fσ, and the initial present value for this phase is

$$ \underset{T_b}{\overset{T_a}{\int }}{e}^{- rt}F{x}_a(t) dt=F\underset{T_b}{\overset{T_a}{\int }}{F}^{-\sigma }{e}^{- rt} dt={e}^{-r{T}_b}F\frac{1-{e}^{-r\Delta T}}{r{F}^{\sigma }}={e}^{-r{T}_b}F\frac{1-{e}^{- rB{F}^{\sigma }}}{r{F}^{\sigma }}, $$

since ΔT = BFσ. Thus, the cartel’s objective function (9.30) transforms to

$$ {W}_a=\underset{P_0,B}{\max}\left[{P}_0\left({S}_a-B\right)+{e}^{-r{T}_b}F\frac{1-{e}^{- rB{F}^{\sigma }}}{r{F}^{\sigma }}\right]. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). Cartel Behaviour in an Exhaustible Resource Industry. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_9

Download citation

Publish with us

Policies and ethics