Skip to main content

Commodity Prices, Convenience Yield and Inventory Behaviour

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

  • 266 Accesses

Abstract

Markets for mineral commodities serve for delivering resources extracted from the earth to consumers. Price dynamics on these markets depend on the behaviour of commodity traders holding inventories. In this chapter, we examine a commodity market model with economic agents acting on the demand side and extracting utility from holding storage. In this model, commodity price fluctuations are driven by stochastic supply shocks. The market equilibrium dynamic is described by the stochastic difference equations for the commodity price and the convenience yield, which indicates the marginal utility of inventory holding. We show how the inventory behaviour of traders contributes to the autocorrelation of prices. Analysis of the model reveals the cases of price-stabilizing and -destabilizing inventory behaviour. In the former case, inventories are adjusted to smooth price fluctuations. In the latter case, the demand for inventories reinforces a price change caused by supply shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brennan M (1958) The supply of storage. Am Econ Rev 48(1):50–72

    Google Scholar 

  • Gibson R, Schwartz E (1989) Valuation of long-term oil-linked assets, Anderson graduate School of Management, UCLA, working paper, #6-89

    Google Scholar 

  • Gibson R, Schwartz E (1990) Stochastic convenience yield and the pricing of oil contingent claims. J Financ 45(3):959–976

    Article  Google Scholar 

  • Kaldor N (1939) Speculation and economic stability. Rev Econ Stud 7:1–27

    Article  Google Scholar 

  • Killian L, Murphy D (2014) The role of inventories and speculative trading in the global market for crude oil. J Appl Econ 29:454–478

    Article  Google Scholar 

  • Lautier D (2009) Convenience yield and commodity markets. Les Cahiers de la Chaire 22, Chaire Finance & Development Durable, p 16

    Google Scholar 

  • Litzenberger R, Rabinowitz N (1995) Backwardation in oil futures markets: Theory and empirical evidence. J Financ 50(5):1517–1545

    Article  Google Scholar 

  • Pindyck R (1994) Inventories and the short-run dynamic of commodity prices. RAND J Econ 25(1):141–159

    Article  Google Scholar 

  • Pindyck R (2004) Volatility and commodity price dynamics. J Futur Mark 24(11):1029–1047

    Article  Google Scholar 

  • Scheinkman J, Schechtman J (1983) A simple competitive model with production and storage. Rev Econ Stud 50(3):427–411

    Article  Google Scholar 

  • Schwartz E (1997) The stochastic behaviour of commodity prices: implications for valuation and hedging. J Financ 52(3):923−973. Papers and proceedings fifty-seventh annual meeting, American finance association

    Google Scholar 

  • Smith J (2009) World oil: market or mayhem. J Econ Perspect 23:145–164

    Article  Google Scholar 

  • Williams J (1986) The economic function of futures markets. Cambridge University Press, New York, p 258

    Book  Google Scholar 

  • Williams J, Wright B (1991) Storage and commodity markets. Cambridge University Press, Cambridge, p 502

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Proposition 6.1

The solution for st, yt is found as a linear approximation of Eqs. (6.21), (6.22) near the stationary point s∗ = (b/r)1/θ, x∗ = 1. Consider the storage-consumption ratio (6.19):

$$ {s}_t/{y}_t={\left(b/{\delta}_t\right)}^{1/\theta }. $$

The linear approximation of the right-hand side for δ∗ = r implies:

$$ {\left(b/{\delta}_t\right)}^{1/\theta }={s}^{\ast }{\left(r/{\delta}_t\right)}^{1/\theta}\approx {s}^{\ast}\left(1-\left({\delta}_t-r\right)/\theta r\right). $$

Hence,

$$ \mathit{\ln}\left({s}_t/{s}^{\ast}\right)-\mathit{\ln}{y}_t\approx -\frac{\left({\delta}_t-r\right)}{\theta r}, $$
(6.41)

We will show that the solution for st = μtat satisfying this approximation is given by

$$ {s}_t={s}_t^a+{\mu}_r^{\prime}\left({\delta}_t-r\right){a}^{\ast }={s}_t^a+{\mu}_r^{\prime}\left({\delta}_t-r\right)\left(1+{\left(b/r\right)}^{1/\theta}\right), $$
(6.42)

where a∗ = x∗ + s∗ = 1 + (b/r)1/θ is the stationary availability,

$$ {s}_t^a=\mu \left({x}_t+{s}_{t-1}^a\right)=\mu \sum \limits_{\tau =0}^{\infty }{\mu}^{\tau }{x}_{t-\tau } $$
(6.43)

is the amount of storage defined by the availability effect,

$$ {\mu}_r^{\prime }=-\frac{b^{1/\theta }{r}^{1/\theta -1}}{\theta {\left({b}^{1/\theta }+{r}^{1/\theta}\right)}^2} $$

is the derivative of μ with respect to r. Inserting this derivative into (6.42) implies

$$ {s}_t={s}_t^a-\frac{b^{1/\theta }{r}^{1/\theta -1}\left(1+{\left(b/r\right)}^{1/\theta}\right)}{\theta {\left({b}^{1/\theta }+{r}^{1/\theta}\right)}^2}\left({\delta}_t-r\right)={s}_t^a-\left(\mu /\theta r\right)\left({\delta}_t-r\right). $$
(6.44)

The linear approximation for supply process (6.16) is:

$$ {x}_t=\alpha {x}_{t-1}+\left(1-\alpha \right)+{\varepsilon}_t. $$

Iterating terms yields:

$$ {x}_t=\sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau }{\varepsilon}_{t-\tau }+\left(1-\alpha \right)\sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau }=1+\sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau }{\varepsilon}_{t-\tau }. $$

Inserting this into (6.43) implies:

$$ {s}_t^a=\sum \limits_{\tau =0}^{\infty }{\mu}^{\tau +1}\left(1+\sum \limits_{j=0}^{\infty }{\alpha}^j{\varepsilon}_{t-\tau -j}\right)=\frac{\mu }{1-\mu }+\sum \limits_{\tau =0}^{\infty }{\mu}^{\tau +1}\sum \limits_{j=0}^{\infty }{\alpha}^j{\varepsilon}_{t-\tau -j}. $$
(6.45)

Suppose that α > μ and rearrange the dual sum:

$$ \sum \limits_{\tau =0}^{\infty }{\mu}^{\tau +1}\sum \limits_{j=0}^{\infty }{\alpha}^j{\varepsilon}_{t-\tau -j}=\mu \sum \limits_{j=0}^{\infty }{\alpha}^j{\varepsilon}_{t-j}+{\mu}^2\sum \limits_{j=0}^{\infty }{\alpha}^j{\varepsilon}_{t-1-j}+\dots =\mu \left({\varepsilon}_t+\left(\mu +\alpha \right){\varepsilon}_{t-1}+\left({\mu}^2+\mu \alpha +{\alpha}^2\right){\varepsilon}_{t-2}\dots \right)=\mu \left({\varepsilon}_t+\left(\left(\mu /\alpha \right)+1\right)\alpha {\varepsilon}_{t-1}+\left({\left(\mu /\alpha \right)}^2+\left(\mu /\alpha \right)+1\right){\alpha}^2{\varepsilon}_{t-2}\dots \right)=\mu \sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau }{\varepsilon}_{t-\tau}\sum \limits_{j=0}^{\tau }{\left(\mu /\alpha \right)}^j $$
$$ =\mu \sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau}\frac{1-{\left(\mu /\alpha \right)}^{\tau +1}}{1-\mu /\alpha }{\varepsilon}_{t-\tau }=\frac{\mu }{\alpha -\mu }\ \sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau +1}\left(1-{\left(\mu /\alpha \right)}^{\tau +1}\right){\varepsilon}_{t-\tau }=\frac{\mu }{\alpha -\mu }\ \left(\alpha \sum \limits_{\tau =0}^{\infty }{\alpha}^{\tau }{\varepsilon}_{t-\tau }-\mu \sum \limits_{\tau =0}^{\infty }{\mu}^{\tau }{\varepsilon}_{t-\tau}\right)=\frac{\mu }{\alpha -\mu }\ \left(\alpha ln{x}_t-\mu ln{q}_t\right) $$

due to (6.23) and (6.25). Inserting this into (6.45) and then into (6.44) implies the solution for st:

$$ {s}_t={s}_t^a-\left(\frac{\mu }{\theta r}\right)\left({\delta}_t-r\right)={s}^{\ast }+\mu \frac{\mu ln{q}_t-\alpha ln{x}_t}{\mu -\alpha }-\left(\frac{\mu }{\theta r}\right)\left({\delta}_t-r\right), $$

since μ/(1 − μ) = (b/r)1/θ = s∗. One can show, similarly, that this formula holds for α < μ.

The solution for yt is derived in the same way:

$$ {y}_t=1+\left(1-\mu \right)\frac{\mu ln{q}_t-\alpha ln{x}_t}{\mu -\alpha }+\left(\mu /\theta r\right)\left({\delta}_t-r\right). $$

The obtained solution for st and yt satisfies condition (6.41), because the left-hand side of (6.41) equals (st/s∗) −  ln yt ≈ st/s∗ − yt =  − ((1 − μ)/θr)(δt − r) − (μ/θr)(δt − r) =  − (δt − r)/θr.

1.2 A.2 Proposition 6.2

Consider the equation for expected price growth (6.17), written as

$$ {E}_t\Delta \mathit{\ln}{p}_{t+1}=-r{\overset{\sim }{\delta}}_t. $$
(6.46)

Using the equation for price (6.28) we have:

$$ {E}_t\Delta \mathit{\ln}{p}_{t+1}=\theta \left(1-\mu \right)\frac{\mu {E}_t\Delta \mathit{\ln}{q}_{t+1}-\alpha {E}_t\Delta \mathit{\ln}{x}_{t+1}}{\alpha -\mu }-\mu {E}_t\Delta {\overset{\sim }{\delta}}_{t+1}. $$
(6.47)

From (6.16) and (6.24):

$$ {E}_t\Delta \mathit{\ln}{q}_{t+1}=\left(\mu -1\right)\mathit{\ln}{q}_t,\kern0.75em {E}_t\Delta \mathit{\ln}{x}_{t+1}=\left(\alpha -1\right)\mathit{\ln}{x}_t. $$
(6.48)

For the linear solution \( {\overset{\sim }{\delta}}_t={\lambda}_q\mathit{\ln}{q}_t+{\lambda}_x\mathit{\ln}{x}_t \) we obtain:

$$ {E}_t\Delta {\overset{\sim }{\delta}}_{t+1}={\lambda}_q{E}_t\Delta \mathit{\ln}{q}_{t+1}+{\lambda}_x{E}_t\Delta \mathit{\ln}{x}_{t+1}={\lambda}_q\left(\mu -1\right)\mathit{\ln}{q}_t+{\lambda}_x\left(\alpha -1\right)\mathit{\ln}{x}_t. $$
(6.49)

Inserting (6.47), (6.48), (6.49) and (6.29) into (6.46) implies:

$$ {E}_t\Delta \mathit{\ln}{p}_{t+1}=\theta \left(1-\mu \right)\frac{\mu \left(\mu -1\right)\mathit{\ln}{q}_t-\alpha \left(\alpha -1\right)\mathit{\ln}{x}_t}{\alpha -\mu }-\mu \left({\lambda}_q\left(\mu -1\right)\mathit{\ln}{q}_t+{\lambda}_x\left(\alpha -1\right)\mathit{\ln}{x}_t\right)=-r\left({\lambda}_q\mathit{\ln}{q}_t+{\lambda}_x\mathit{\ln}{x}_t\right). $$

Gathering the terms with lnqt and lnxt in this equality implies equations for λq and λx, respectively:

$$ \theta \left(1-\mu \right)\frac{\mu \left(\mu -1\right)\mathit{\ln}{q}_t}{\alpha -\mu }-\mu {\lambda}_q\left(\mu -1\right)\mathit{\ln}{q}_t=-r{\lambda}_q\mathit{\ln}{q}_t $$
$$ \theta \left(1-\mu \right)\frac{\alpha \left(\alpha -1\right)\mathit{\ln}{x}_t}{\mu -\alpha }-\mu {\lambda}_x\left(\alpha -1\right)\mathit{\ln}{x}_t=-r{\lambda}_x\mathit{\ln}{x}_t, $$

which yield:

$$ {\lambda}_q=\frac{\theta {\left(1-\mu \right)}^2\mu }{\left(\alpha -\mu \right)\left(r+\mu \left(1-\mu \right)\right)},\kern0.75em {\lambda}_x=\frac{\theta \left(1-\mu \right)\left(1-\alpha \right)\alpha }{\left(\mu -\alpha \right)\left(r+\mu \left(1-\alpha \right)\right)}. $$

1.3 A.3 Equation (6.31)

Inserting \( {\overset{\sim }{\delta}}_t={\lambda}_q\mathit{\ln}{q}_t+{\lambda}_x\mathit{\ln}{x}_t \) into the equation for price (6.28):

$$ \mathit{\ln}{p}_t=\theta \left(1-\mu \right)\frac{\mu ln{q}_t-\alpha ln{x}_t}{\alpha -\mu }-\mu \left({\lambda}_q\mathit{\ln}{q}_t+{\lambda}_x\mathit{\ln}{x}_t\right)=\left(\frac{\theta \left(1-\mu \right)\mu }{\alpha -\mu }-\mu {\lambda}_q\right)\mathit{\ln}{q}_t+\left(\frac{\theta \left(1-\mu \right)\alpha }{\mu -\alpha }-\mu {\lambda}_x\right)\mathit{\ln}{x}_t $$

we have it that

$$ {\eta}_q=\frac{\theta \left(1-\mu \right)\mu }{\alpha -\mu }-\mu {\lambda}_q=\frac{\theta \left(1-\mu \right)\mu }{\alpha -\mu}\left(1-\frac{\left(1-\mu \right)\mu }{r+\mu \left(1-\mu \right)}\right)=\frac{r\theta \left(1-\mu \right)\mu }{\left(\alpha -\mu \right)\left(r+\mu \left(1-\mu \right)\right)}={\lambda}_q\frac{r}{1-\mu }, $$
$$ {\eta}_x=\frac{\theta \left(1-\mu \right)\alpha }{\mu -\alpha }-\mu {\lambda}_x=\frac{\theta \left(1-\mu \right)\alpha }{\mu -\alpha}\left(1,-,\frac{\left(1-\alpha \right)\mu }{r+\mu \left(1-\alpha \right)}\right)=\frac{r\theta \left(1-\mu \right)\alpha }{\left(\mu -\alpha \right)\left(r+\mu \left(1-\alpha \right)\right)}={\lambda}_x\frac{r}{1-\alpha }. $$

1.4 A.4 Proposition 6.3

  1. 1.

    Equations (6.31), (6.47) and (6.17) imply:

    $$ \Delta \mathit{\ln}{p}_t={\eta}_q\Delta \mathit{\ln}{q}_t+{\eta}_x\Delta \mathit{\ln}{x}_t={\eta}_q\left(\mu -1\right)\mathit{\ln}{q}_t+{\eta}_x\left(\alpha -1\right)\mathit{\ln}{x}_t+\left({\eta}_q+{\eta}_x\right){\varepsilon}_t={E}_{t-1}\Delta \mathit{\ln}{p}_t+\left({\eta}_q+{\eta}_x\right){\varepsilon}_t=r-{\delta}_{t-1}+\left({\eta}_q+{\eta}_x\right){\varepsilon}_t. $$

From (6.29), (6.16), (6.24):

$$ {\overset{\sim }{\delta}}_t={\lambda}_q\mathit{\ln}{q}_t+{\lambda}_x\mathit{\ln}{x}_t={\lambda}_q\mu ln{q}_{t-1}+{\lambda}_x\alpha ln{x}_{t-1}+\left({\lambda}_q+{\lambda}_x\right){\varepsilon}_t=\mu \left({\lambda}_q\mathit{\ln}{q}_{t-1}+{\lambda}_x\mathit{\ln}{x}_{t-1}\right)+\left(\alpha -\mu \right){\lambda}_x\mathit{\ln}{x}_{t-1}+\left({\lambda}_q+{\lambda}_x\right){\varepsilon}_t=\mu {\overset{\sim }{\delta}}_{t-1}+\left(\alpha -\mu \right){\lambda}_x\mathit{\ln}{x}_{t-1}+\left({\lambda}_q+{\lambda}_x\right){\varepsilon}_t. $$

Consequently,

$$ \Delta {\delta}_t=r\left(1-\mu \right)+\left(\mu -1\right){\delta}_{t-1}+r\left(\alpha -\mu \right){\lambda}_x\mathit{\ln}{x}_{t-1}+r\left({\lambda}_q+{\lambda}_x\right){\varepsilon}_t=\left(1-\mu \right)\left(r-{\delta}_{t-1}\right)+r\left(\alpha -\mu \right){\lambda}_x\mathit{\ln}{x}_{t-1}+r\left({\lambda}_q+{\lambda}_x\right){\varepsilon}_t. $$
  1. 2.

    ηq + ηx=

    $$ ={\lambda}_q\frac{r}{1-\mu }+{\lambda}_x\frac{r}{1-\alpha }=\frac{r\theta \left(1-\mu \right)\mu }{\left(\alpha -\mu \right)\left(r+\mu \left(1-\mu \right)\right)}+\frac{r\theta \left(1-\mu \right)\alpha }{\left(\mu -\alpha \right)\left(r+\mu \left(1-\alpha \right)\right)}=\frac{r\theta \left(1-\mu \right)}{\left(\alpha -\mu \right)}\left(\frac{\mu }{r+\mu \left(1-\mu \right)},-,\frac{\alpha }{r+\mu \left(1-\alpha \right)}\right)=\frac{r\theta \left(1-\mu \right)}{\left(\alpha -\mu \right)}\cdot \frac{r\left(\mu -\alpha \right)+\mu \left(\mu \left(1-\alpha \right)-\alpha \left(1-\mu \right)\right)}{\left(r+\mu \left(1-\mu \right)\right)\left(r+\mu \left(1-\alpha \right)\right)}=\frac{r\theta \left(1-\mu \right)}{\left(\alpha -\mu \right)}\cdot \frac{r\left(\mu -\alpha \right)+\mu \left(\mu -\alpha \right)}{\left(r+\mu \left(1-\mu \right)\right)\left(r+\mu \left(1-\alpha \right)\right)}=-\frac{r\theta \left(1-\mu \right)\left(r+\mu \right)}{\left(r+\mu \left(1-\mu \right)\right)\left(r+\mu \left(1-\alpha \right)\right)}<0. $$

1.5 A.5 Equation (6.40)

From (6.26), (6.27), the current availability is

$$ {a}_t={s}_t+{y}_t={a}^{\ast }+\frac{\mu ln{q}_t-\alpha ln{x}_t}{\mu -\alpha }, $$

because a∗ = s∗ + 1. Hence, due to (6.16), (6.24):

$$ \Delta {a}_t=\frac{\mu ln{q}_t-\alpha ln{x}_t}{\mu -\alpha }-\frac{\mu ln{q}_{t-1}-\alpha ln{x}_{t-1}}{\mu -\alpha }={\varepsilon}_t-\frac{\left(1-\mu \right)\mu ln{q}_{t-1}-\left(1-\alpha \right)\alpha ln{x}_{t-1}}{\mu -\alpha } $$
$$ ={\varepsilon}_t-\frac{\left(1-\mu \right)\mu ln{q}_{t-1}-\left(1-\mu \right)\alpha ln{x}_{t-1}}{\mu -\alpha }-\frac{\left(1-\mu \right)\alpha -\left(1-\alpha \right)\alpha }{\mu -\alpha}\mathit{\ln}{x}_{t-1}={\varepsilon}_t+\left(1-\mu \right)\left({a}^{\ast }-{a}_{t-1}\right)+\alpha ln{x}_{t-1}=\left(1-\mu \right)\left({a}^{\ast }-{a}_{t-1}\right)+\mathit{\ln}{x}_t. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). Commodity Prices, Convenience Yield and Inventory Behaviour. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_6

Download citation

Publish with us

Policies and ethics