Skip to main content

Global Carbon Budgeting and the Social Cost of Carbon

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

  • 294 Accesses

Abstract

The limited availability of natural resources on the global level relates primarily to the influence of fossil energy use on climate change, rather than to the exhaustion of fossil energy resources. In this chapter we consider a version of the Integrated Assessment climate-economy model with overlapping generations and fossil energy as an input in production. In a laissez-faire equilibrium, individuals do not account in their production plans for the negative external effects of carbon dioxide emission. These effects are internalized by a “social planner” solving the problem of optimal accumulation of global wealth and carbon dioxide concentration in the atmosphere. The carbon budget is defined for this problem as the optimal concentration of carbon dioxide in the long term. The social opportunity cost of fossil fuel consumption supporting this budget is given by the present value of marginal welfare losses of future generations. We examine the effects of welfare discounting on the long-term outcome and, in particular, on the welfare of distant future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appunn K, Eriksen F, Wettengel J (2020) Germany’s greenhouse gas emissions and energy transition targets. Clean Energy Wire, Factsheets. https://www.cleanenergywire.org/factsheets/germanys-greenhouse-gas-emissions-and-climate-targets. Accessed 18 Oct 2020

  • Cai Y, Judd K, Lontzek T (2013) The social cost of stochastic and irreversible climate change. NBER working paper, no. 18704, p 38

    Google Scholar 

  • Carbon Tracker Initiative (2018) Carbon budgets: where we are? Carbon budget explainer. https://www.carbontracker.org. Accessed 17 Oct 2020

  • Datahub (2020) Global temperature time series. https://datahub.io/core/global-temp#resource-annual. Accessed 20 Oct 2020

  • DeVries T (2014) The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob Biogeochem Cycles 28:631–647

    Article  Google Scholar 

  • Gilfillan D, Marland G, Boden T, Andres T (2019) Global, regional, and national fossil-fuel CO2 emissions. Available at: https://energy.appstate.edu/CDIAC. Accessed 19 Oct 2020

  • Global Carbon Budget (2018) Global Carbon Project. Future earth: research, innovation, sustainability. Earth system science data. The data publishing journal. Published on 5 December 2018, p. 81

    Google Scholar 

  • Global Carbon Budget (2019). https://www.icos-cp.eu/global-carbon-budget-2019. Accessed 21 Oct 2020, Global Carbon Project. (2019). Supplemental data of Global Carbon Budget 2019 (Version 1.0) [Data set]. Global Carbon Project. https://doi.org/10.18160/gcp-2019. Accessed 21 Oct 2020

  • Golosov M, Hassler J, Krussel P, Tsyvinsky A (2014) Optimal taxes on fossil fuel in general equilibrium. Econometrica 82(1):41–88

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 151

    Chapter  Google Scholar 

  • Hansis E, Davis S, Pongratz J (2015) Relevance of methodological choices for accounting of land use change carbon fluxes. Glob Biogeochem Cycles 29:1230–1246

    Article  Google Scholar 

  • Heal G, Millner A (2017) Uncertainty and ambiguity in environmental economics: conceptual issues. Center for Climate Change and Economics Policy Working Paper no. 314 https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2017/09/Working-Paper-278-Heal-Millner.pdf. Accessed 20 Oct 2020

  • Houghton R, Nassikas A (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31:456–472

    Article  Google Scholar 

  • International Energy Agency (2011) World energy outlook 2011. IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2011. Accessed 22 Oct 2020

  • International Energy Agency (2015) Energy and climate change. World Energy Outlook − 2015 special report, p 200

    Google Scholar 

  • International Energy Agency (2017) World energy outlook 2017. IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2017. Accessed 22 Oct 2020

  • Joos F, Spahni R (2008) Rates of change in natural anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci 105:1425–1430

    Article  Google Scholar 

  • Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney S, Graven H, Gruber N, McKinley G, Murata A, Rios A, Sabine C (2013) Global Ocean storage of anthropogenic carbon. Biogeosciences 10:2169–2191

    Article  Google Scholar 

  • McKibben B (2012) Global warming’s terrifying new math. Three simple numbers that add up to global catastrophe – and that make clear who the real enemy is, Rolling Stone. July 19, 2012 https://www.rollingstone.com/politics/politics-news/global-warmings-terrifying-new-math-188550. Accessed 19 Oct 2020

  • Nordhaus W (1994) Managing the global commons: The economics of climate change. MIT Press, Cambridge, MA

    Google Scholar 

  • Nordhaus W (2014) Estimates of the social cost of carbon: Concepts and results from the DICE-13R model and alternative approaches. J Assoc Environ Resour Econ 1(1/2):273–312

    Google Scholar 

  • Nordhaus W (2016) Projections and uncertainties about climate change in an era of minimal climate policies. Cowles foundation discussion paper no. 2057, Yale University, p 44

    Google Scholar 

  • Nordhaus W (2017) Evolution of modelling of the economics of global warming: Changes in the DICE model, 1992–2017. Cowles Foundation Discussion Paper, No. 2084

    Google Scholar 

  • Nordhaus W, Sztorc P (2013) DICE 2013R: Introduction and user’s manual. Yale University, second edition, p 101

    Google Scholar 

  • Nordhaus W, Moffat A (2017) A survey of global impacts of climate change: Replication, survey methods and a statistical analysis. Cowles foundation discussion paper no. 2096, Yale University, p 40

    Google Scholar 

  • Paris Agreement on Climate Change (2015) United Nations framework convention on climate change

    Google Scholar 

  • Roe G, Baker M (2007) Why is climate sensitivity so unpredictable? Supplementary material. Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA, p. 7

    Google Scholar 

  • SeaLevel.info (2020) Atmospheric Carbon Dioxide (CO2) levels, 1800 – present https://www.sealevel.info/co2.html. Accessed 18 Oct 2020

  • Stern N (2007) The economics of climate change: The Stern review. Cambridge University Press, London, p 662

    Book  Google Scholar 

  • Weitzman M (2011) Fat-tailed uncertainty in the economics of catastrophic climate change. Rev Environ Econ Policy 5(2):275–292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Characteristic Eq. (5.16)

The backward-dynamic system corresponding to (5.12), (5.13) is

$$ {W}_{t-1}={\left(\frac{W_t}{\left(1-\alpha -\delta\ \right)A\mathcal{D}\left({Q}_t\right)}\right)}^{\frac{1}{\alpha +\delta }} $$
(5.37)
$$ {Q}_{t-1}={\left(1-\mu \right)}^{-1}\left({Q}_t-\frac{\theta \delta {W}_{t-1}}{\alpha +\delta}\right). $$
(5.38)

Take the derivatives:

$$ \frac{\partial {W}_{t-1}}{\partial {W}_t}=\frac{{W_t}^{-1}}{\alpha +\delta }{\left(\frac{W_t}{\left(1-\alpha -\delta\ \right)A\mathcal{D}\left({Q}_t\right)}\right)}^{\frac{1}{\alpha +\delta }}=\frac{1}{\alpha +\delta}\cdot \frac{W_{t-1}}{W_t} $$
$$ \frac{\partial {W}_{t-1}}{\partial {Q}_t}=-\frac{\mathcal{D}{\left({Q}_t\right)}^{-\frac{1}{\alpha +\delta }-1}}{\alpha +\delta }{\mathcal{D}}^{\prime}\left({Q}_t\right){\left(\frac{W_t}{\left(1-\alpha -\delta\ \right)A}\right)}^{\frac{1}{\alpha +\delta }}=-\frac{1}{\alpha +\delta}\cdot \frac{{\mathcal{D}}^{\prime}\left({Q}_t\right)}{\mathcal{D}\left({Q}_t\right)}\cdot {W}_{t-1} $$
$$ \frac{\partial {Q}_{t-1}}{\partial {W}_t}=-{\left(1-\mu \right)}^{-1}\frac{\theta \delta}{\alpha +\delta}\cdot \frac{\partial {W}_{t-1}}{\partial {W}_t} $$
$$ \frac{\partial {Q}_{t-1}}{\partial {Q}_t}={\left(1-\mu \right)}^{-1}\left(1,-,\frac{\theta \delta}{\alpha +\delta },\cdot, \frac{\partial {W}_{t-1}}{\partial {Q}_t}\right). $$

For the steady state, Wt = Wt − 1 = W, Qt = Qt − 1 = Q and, from (5.14):

$$ {W}^{\ast }=\frac{\mu \left(\alpha +\delta \right)}{\theta \delta}{Q}^{\ast }. $$

Hence, for the steady state we have:

$$ \frac{\partial {W}_{t-1}}{\partial {W}_t}=\frac{1}{\alpha +\delta } $$
$$ \frac{\partial {W}_{t-1}}{\partial {Q}_t}=-\frac{1}{\alpha +\delta}\cdot \frac{{\mathcal{D}}^{\prime}\left({Q}^{\ast}\right)}{\mathcal{D}\left({Q}^{\ast}\right)}\cdot {W}^{\ast }=-\frac{\mu }{\theta \delta}\cdot \frac{{\mathcal{D}}^{\prime}\left({Q}^{\ast}\right){Q}^{\ast }}{\mathcal{D}\left({Q}^{\ast}\right)}=\frac{\mu \varepsilon \left({Q}^{\ast}\right)}{\theta \delta} $$
$$ \frac{\partial {Q}_{t-1}}{\partial {W}_t}=-\frac{\theta \delta}{\left(1-\mu \right){\left(\alpha +\delta \right)}^2} $$
$$ \frac{\partial {Q}_{t-1}}{\partial {Q}_t}={\left(1-\mu \right)}^{-1}\left(1-\frac{\mu \varepsilon \left({Q}^{\ast}\right)}{\alpha +\delta}\right). $$

The characteristic equation for the backward-dynamic system (5.37), (5.38) is

$$ \left|\begin{array}{cc}\frac{1}{\alpha +\delta }-\eta & \frac{\mu \varepsilon \left({Q}^{\ast}\right)}{\theta \delta}\\ {}-\frac{\theta \delta}{\left(1-\mu \right){\left(\alpha +\delta \right)}^2}& {\left(1-\mu \right)}^{-1}\left(1-\frac{\mu \varepsilon \left({Q}^{\ast}\right)}{\alpha +\delta}\right)-\eta \end{array}\right|={\eta}^2-\frac{1-\mu +\alpha +\delta -\mu \varepsilon \left({Q}^{\ast}\right)}{\left(1-\mu \right)\left(\alpha +\delta \right)}\eta +\frac{1}{\left(1-\mu \right)\left(\alpha +\delta \right)}=0 $$

or

$$ \left(1-\mu \right)\left(\alpha +\delta \right){\eta}^2-\left(1+\alpha +\delta -\left(1+\varepsilon \left({Q}^{\ast}\right)\right)\mu \right)\eta +1=0. $$
(5.39)

This equation has two positive real roots if

$$ {\left(1-\mu +\alpha +\delta -\varepsilon \left({Q}^{\ast}\right)\mu \right)}^2>4\left(1-\mu \right)\left(\alpha +\delta \right), $$

which is the case for small ε(Q). The left-hand side of (5.39) is positive for η = 1, because

$$ \left(1-\mu \right)\left(\alpha +\delta \right)>\alpha +\delta -\left(1+\varepsilon \left({Q}^{\ast}\right)\right)\mu $$

(since α + δ < 1 + ε(Q)) implying that the minimal real root of (5.39) is above unity. Consequently, both characteristic roots η1 and η2 depicted in Fig. 5.6 are above one, implying that the steady state of the backward-dynamic system (5.37), (5.38) is an unstable node.

1.2 A.2 The First-Order Conditions (5.24)–(5.26)

The Lagrangian for the social planner’s problem (5.18)–(5.22) is

$$ \mathcal{L}=\sum \limits_{t=0}^{\infty }{\beta}^t\left[u\left(\rho {W}_t\right)+{\psi}_t\left(\left(1-\alpha -\delta\ \right)\mathcal{D}\left({Q}_t\right)A\left({\lambda}_t\right){W}_{t-1}^{\alpha +\delta }-{W}_t\right)+{v}_t\left({Q}_t-\left(1-\mu \right){Q}_{t-1}-\theta \left(1-{\lambda}_t\right){W}_{t-1}\right)\right], $$
(5.40)

where we have used equations for output (5.18) and consumption (5.23). Differentiating with respect to λt implies

$$ {\psi}_t\left(1-\alpha -\delta\ \right)\mathcal{D}\left({Q}_t\right){A}^{\prime}\left({\lambda}_t\right){W}_{t-1}^{\alpha +\delta }=-{v}_t\theta {W}_{t-1}. $$

Due to (5.18), (5.21), the left-hand side of this equation can be written as ψtlnA(λt)Wt, implying (5.24). Differentiating (5.40) with respect to Qt and taking into account (5.8), (5.21) yields the costate equation:

$$ {v}_t=-{\psi}_t{W}_tl{n}^{\prime}\mathcal{D}\left({Q}_t\right)+\beta \left(1-\mu \right){v}_{t+1}, $$

which is equivalent to (5.25).

Consider the costate Eq. (5.26). Differentiating (5.40) with respect to Wt and taking into account (5.18), (5.21) gives:

$$ \rho {u}^{\prime}\left(\rho {W}_t\right)-{\psi}_t+\beta {\psi}_{t+1}\left(\alpha +\delta\ \right)\frac{W_{t+1}}{W_t}-\beta \theta {v}_{t+1}\left(1-{\lambda}_{t+1}\right)=0. $$
(5.41)

From the first-order condition (5.24), we have:

$$ -\theta {v}_{t+1}={\psi}_{t+1}l{n}^{\prime }A\left({\lambda}_{t+1}\right)\frac{W_{t+1}}{W_t}. $$

Inserting this into (5.41) implies

$$ \rho {u}^{\prime}\left(\rho {W}_t\right)-{\psi}_t+\beta {\psi}_{t+1}\frac{W_{t+1}}{W_t}\left(\alpha +\delta +\left(1-{\lambda}_{t+1}\right)l{n}^{\prime }A\left({\lambda}_{t+1}\right)\right)=0. $$
(5.42)

We have it that

$$ l{n}^{\prime }A\left({\lambda}_{t+1}\right)=\frac{\alpha }{\lambda_{t+1}}-\frac{\delta }{\left(1-{\lambda}_{t+1}\right)}, $$

hence,

$$ \alpha +\delta +\left(1-{\lambda}_{t+1}\right)l{n}^{\prime }A\left({\lambda}_{t+1}\right)=\alpha +\alpha \frac{1-{\lambda}_{t+1}}{\lambda_{t+1}}=\frac{\alpha }{\lambda_{t+1}}\kern0.5em . $$

We can rewrite (5.42) as

$$ \rho {u}^{\prime}\left(\rho {W}_t\right)-{\psi}_t+\beta {\psi}_{t+1}\frac{W_{t+1}}{W_t}\cdot \frac{\alpha }{\lambda_{t+1}}=0. $$

This is equivalent to

$$ {\psi}_t=\rho {u}^{\prime}\left(\rho {W}_t\right)+\beta \left(1-\alpha -\delta\ \right){\psi}_{t+1}{R}_{t+1}, $$

because Wt + 1 = (1 − α − δ )Yt + 1 from (5.21) and

$$ {R}_{t+1}=\frac{\partial {Y}_{t+1}}{\partial {k}_{ft+1}}=\frac{\alpha {Y}_{t+1}}{k_{ft+1}}=\frac{\alpha {Y}_{t+1}}{\lambda_{t+1}{W}_t}. $$

1.3 A.3 The Steady-State Rule (5.30)

Inserting (5.27) and (5.28) into (5.29) and cancelling ψ out of both sides implies

$$ \left(1-\beta \left(1-\mu \right)\right)\left(1-\lambda \right)l{n}^{\prime }A\left(\lambda \right)=\mu Ql{n}^{\prime}\mathcal{D}(Q). $$

Rearrange terms:

$$ \left(1-\beta \left(1-\mu \right)\right)\left(\alpha \frac{1-\lambda }{\lambda }-\delta \right)=-\mu \varepsilon (Q) $$
$$ \frac{\lambda }{1-\lambda }=\frac{\alpha }{\delta -{\left(1-\beta \left(1-\mu \right)\right)}^{-1}\mu \varepsilon (Q)}\kern0.5em . $$

This yields (5.30).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). Global Carbon Budgeting and the Social Cost of Carbon. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_5

Download citation

Publish with us

Policies and ethics