Skip to main content

Pricing Energy Resources Under Transition to Alternative Energy

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

  • 262 Accesses

Abstract

Resource pricing has specific features in the presence of alternative technologies providing substitutes for conventional non-renewable resources. The sources of alternative energy for fossil fuels include wind, solar and biofuel energy. In this chapter, we consider a model of gradual energy transition for an energy-supplying industry. Exhaustion of a conventional non-renewable resource in this model causes a decline of the relative price of alternative energy. The market share of this energy in the energy mix of consumers is increasing as a result of gradual substitution of renewables for conventional resources. An important property demonstrated below is the Green Paradox: a higher consumer preference for alternative energy implies a higher intensity of the conventional resource extraction in the near term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Hicksian Demand Functions (4.23)

The Lagrangian for the consumer problem (4.1)–(4.3) is

$$ L={p}_1{y}_1+{p}_2{y}_2-\mu \left({\left({y}_1^{1/\theta }+{\left(\lambda {y}_2\right)}^{1/\theta}\right)}^{\theta }-U\right), $$

where μ is the dual variable for constraint (4.3). The first-order conditions are:

$$ \frac{\partial L}{\partial {y}_1}={p}_1-\mu {y}_1^{1/\theta -1}{\left({y}_1^{1/\theta }+{\left(\lambda {y}_2\right)}^{1/\theta}\right)}^{\theta -1}=0 $$
(4.46)
$$ \frac{\partial L}{\partial {y}_2}={p}_2-\mu {\lambda}^{1/\theta }{y}_2^{1/\theta -1}{\left({y}_1^{1/\theta }+{\left(\lambda {y}_2\right)}^{1/\theta}\right)}^{\theta -1}=0 $$
(4.47)
$$ \frac{\partial L}{\partial \mu }=U-{\left({y}_1^{1/\theta }+{\left(\lambda {y}_2\right)}^{1/\theta}\right)}^{\theta }=0. $$
(4.48)

From (4.46), (4.47), the relative price is:

$$ {p}_2/{p}_1={\lambda}^{1/\theta }{\left({y}_2/{y}_1\right)}^{1/\theta -1}={\lambda}^{1/\theta }{\left({y}_2/{y}_1\right)}^{-1/\sigma }, $$

implying that

$$ {y}_2={y}_1{\left({\lambda}^{1/\theta }{p}_1/{p}_2\right)}^{\sigma }={y}_1{\lambda}^{\sigma -1}{\left({p}_1/{p}_2\right)}^{\sigma }. $$
(4.49)

Insert this into (4.48) and rearrange terms

$$ U={\left({y}_1^{1/\theta }+{\lambda}^{1/\theta }{\left({y}_1{\lambda}^{\sigma -1}{\left({p}_1/{p}_2\right)}^{\sigma}\right)}^{1/\theta}\right)}^{\theta }={\left({y}_1^{1/\theta }+{y_1}^{1/\theta }{\lambda}^{\sigma /\theta }{\left({p}_1/{p}_2\right)}^{\sigma /\theta}\right)}^{\theta }={y}_1{\left(1+{\left(\lambda {p}_1/{p}_2\right)}^{\sigma -1}\right)}^{\theta }={y}_1{\left(1+{\left(\left({p}_2/\lambda \right)/{p}_1\right)}^{1-\sigma}\right)}^{\theta }={y}_1{\left(\frac{p_1^{1-\sigma }+{\left({p}_2/\lambda \right)}^{1-\sigma }}{p_1^{1-\sigma }}\right)}^{\theta }. $$

Consequently,

$$ {y}_1={\left({\left({p}_1^{1-\sigma }+{\left({p}_2/\lambda \right)}^{1-\sigma}\right)}^{\frac{1}{1-\sigma }}/{p}_1\right)}^{\sigma }U={\left(P/{p}_1\right)}^{\sigma }U $$

due to (4.24). Inserting this into (4.49) yields:

$$ {y}_2={\lambda}^{\sigma -1}{\left(P/{p}_2\right)}^{\sigma }U. $$

1.2 A.2 Time Derivatives of the Energy Price Index

Differentiate (4.27):

$$ \dot{P}(t)=r\left(1-\sigma \right){\left({p}_1^0\right)}^{1-\sigma }{e}^{r\left(1-\sigma \right)t}\frac{1}{1-\sigma }{\left({\left({p}_1^0\right)}^{1-\sigma }{e}^{r\left(1-\sigma \right)t}+{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma}\right)}^{\frac{1}{1-\sigma }-1}= rP(t)\frac{{\left({p}_1^0\right)}^{1-\sigma }{e}^{r\left(1-\sigma \right)t}}{{\left({p}_1^0\right)}^{1-\sigma }{e}^{r\left(1-\sigma \right)t}+{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }}= rP(t)\left(1-\frac{{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }}{{\left({p}_1^0\right)}^{1-\sigma }{e}^{r\left(1-\sigma \right)t}+{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }}\right)= rP(t)\left[1-{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }P{(t)}^{\sigma -1}\right]. $$

The second-order time derivative of the price index is

$$ \ddot{P}=r\dot{P}\left(1-\sigma {\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }P{(t)}^{\sigma -1}\right). $$

The inflection point of P(t) is

$$ \overset{\sim }{P}=\left({p}_2^{\ast }/\lambda \right){\sigma}^{\frac{1}{1-\sigma }}. $$

The initial price index is

$$ {P}_0={\left({\left({p}_1^0\right)}^{1-\sigma }+{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma}\right)}^{\frac{1}{1-\sigma }}=\left({p}_2^{\ast }/\lambda \right){\left(\frac{{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }}{{\left({p}_1^0\right)}^{1-\sigma }+{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma }}\right)}^{\frac{1}{\sigma -1}}=\left({p}_2^{\ast }/\lambda \right){\psi}^{\frac{1}{\sigma -1}}. $$

Consequently, P(t) is convex-concave if, and only if, \( \overset{\sim }{P}\ge {P}_0 \) or

$$ \psi \le \frac{1}{\sigma }. $$

1.3 A.3 The Time Path of Capital (4.33)

From (4.30), (4.32):

$$ k(t)=\frac{\lambda^{\sigma -1}U}{a}{\left(\frac{P(t)}{p_2^{\ast }}\right)}^{\sigma }=\overline{k}{\lambda}^{\sigma }{\left(\frac{P(t)}{p_2^{\ast }}\right)}^{\sigma }=\overline{k}{\left(\frac{P(t)}{\left({p}_2^{\ast }/\lambda \right)}\right)}^{\sigma }. $$
(4.50)

From (4.25), (4.27):

$$ P(t)={\left({\left({p}_1^0\right)}^{1-\sigma }{e}^{r\left(1-\sigma \right)t}+{\left({p}_2^{\ast }/\lambda \right)}^{1-\sigma}\right)}^{\frac{1}{1-\sigma }}=\left({p}_2^{\ast }/\lambda \right){\left(1+\frac{1-\psi }{\psi }{e}^{-r\left(\sigma -1\right)t}\right)}^{\frac{1}{1-\sigma }}. $$

Inserting this into (4.50) yields

$$ k(t)=\overline{k}{\left(1+\frac{1-\psi }{\psi }{e}^{-r\left(\sigma -1\right)t}\right)}^{-\theta }. $$

1.4 A.4 The Case σ = 2

Consider function F(ψ):

$$ F\left(\psi \right)=\underset{0}{\overset{\infty }{\int }}{\left(1+\frac{\psi }{1-\psi }{e}^{r\left(\sigma -1\right)t}\right)}^{-\theta } dt. $$

Denote γ = er(σ − 1)t. Then

$$ t=\frac{ln\gamma}{r\left(\sigma -1\right)}, dt=\frac{d\gamma}{\gamma r\left(\sigma -1\right)} $$

and

$$ F\left(\psi \right)=\frac{1}{r\left(\sigma -1\right)}\underset{1}{\overset{\infty }{\int }}{\gamma}^{-1}{\left(1+\frac{\psi }{1-\psi}\gamma \right)}^{-\theta } d\gamma . $$

For σ = θ = 2, we have:

$$ rF\left(\psi \right)=\underset{1}{\overset{\infty }{\int }}{\gamma}^{-1}{\left(1+\frac{\psi }{1-\psi}\gamma \right)}^{-2} d\gamma =\underset{1}{\overset{\infty }{\int }}\left(\frac{1}{\gamma }-\frac{\psi }{1-\psi +\psi \gamma}-\frac{\psi \left(1-\psi \right)}{{\left(1-\psi +\psi \gamma \right)}^2}\right) d\gamma ={\left.\left( ln\gamma -\mathit{\ln}\left(1+\frac{\psi }{1-\psi}\gamma \right)+\frac{1-\psi }{1-\psi +\psi \gamma}\right)\right|}_1^{\infty }={\left.\left(\mathit{\ln}\frac{\gamma }{1-\psi +\psi \gamma}+\mathit{\ln}\left(1-\psi \right)+\frac{1-\psi }{1-\psi +\psi \gamma}\right)\right|}_1^{\infty }=- ln\psi -\left(1-\psi \right)=\psi - ln\psi -1. $$

implying (4.42).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). Pricing Energy Resources Under Transition to Alternative Energy. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_4

Download citation

Publish with us

Policies and ethics