Skip to main content

The Economics of Exhaustible Resources

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

  • 433 Accesses

Abstract

We consider in this chapter Hotelling’s classic model of the economics of exhaustible resources and its extensions. The social planner’s problem in this model is to maximize the discounted social benefit from consumption of a homogeneous resource under the constraint that cumulative consumption is no greater than the initial resource stock. The marginal resource rent for the optimal extraction path grows at the real rate of interest, and the equilibrium resource price meets this condition, known as “Hotelling’s rule”. This rule modifies under the model extensions to heterogeneous resources: the marginal rent falls if extraction switches from low-cost to high-cost resource stocks. We consider the models of resource pricing in the presence of a backstop technology, the Herfindahl principle that a lower-cost resource stock depletes before extraction switches to a higher-cost stock, and the principle of comparative advantage for a more general case of heterogeneous resources and consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chakravorty U, Krulce D (1994) Heterogeneous demand and order of resource extraction. Econometrica 62(6):1445–1452

    Article  Google Scholar 

  • Chakravorty U, Krulce D, Roumasset J (2005) Specialization and non-renewable resources: Ricardo meets Ricardo. J Econ Dyn Control 29:1517–1545

    Article  Google Scholar 

  • Dasgupta P, Stiglitz J (1975) Uncertainty and the rate of extraction under alternative arrangements. Inst. Mathemat. Stud. In the Soc. Sci. (IMSSS), tech. rep. no. 179, Sept. 1975

    Google Scholar 

  • Devarajan S, Fisher A (1981) Hotelling’s ‘economics of exhaustible resources’: fifty years later. J Econ Lit 19(1):65–73

    Google Scholar 

  • FRED Economic Data (2020) Economic Research, Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/series/DFII10. Accessed 23 Sep 2020

  • Gaudet G, Salant S (2014) The hotelling model with multiple demands. Resources for the future discussion paper 14−21, Washington DC, p 24

    Google Scholar 

  • Gaudet G, Moreaux M, Salant S (2001) Intertemporal depletion of resource sites by spatially distributed users. Am Econ Rev 91(4):1149–1159

    Article  Google Scholar 

  • Herfindahl O (1967) Depletion and economic theory. In: Gaffney M (ed) Extractive resources and taxation. University of Wisconsin Press, Madison, pp 63–90

    Google Scholar 

  • Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39:137–175

    Article  Google Scholar 

  • Krautkraemer J (1998) Non-renewable resource scarcity. J Econ Lit 36(4):2065–2107

    Google Scholar 

  • Nordhaus W (1973) The allocation of energy resources. Brook Pap Econ Act 3:529–576

    Article  Google Scholar 

  • Rachel L, Summers L (2019) On secular stagnation in the industrialized world. NBER working paper 26198. National Bureau of Economic Research, Massachusetts

    Google Scholar 

  • Solow R (1974) The economics of resources or the resources of economics. Am Econ Rev 64(2):1–14

    Google Scholar 

  • Solow R, Wan F (1976) Extraction costs in the theory of exhaustible resources. Bell J Econ 7(2):359–370

    Article  Google Scholar 

  • Ulph AM (1978) A model of resource depletion with multiple resources. Econ Rec 54:334–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Equation (2.44)

Rewrite condition (2.42) as:

$$ {v}_{10}={v}_{20}+\left({c}_2-{c}_1\right){e}^{-r{T}_1}. $$
(2.A1)

We have it that \( {v}_2\left({T}_1\right)=\left(\alpha -{c}_2\right){e}^{-r\left({T}_2-{T}_1\right)} \) due to (2.12) and because p2(T2) = α. Consequently, \( {v}_{20}=\left(\alpha -{c}_2\right){e}^{-r{T}_2} \). The market-clearing price for 0 ≤ t ≤ T1 is: p1(t) = α − βq1(t), hence, from (2.40a), (2.A1), (2.43):

$$ \beta {q}_1(t)=\alpha -{p}_1(t)=\alpha -{c}_1-{v}_{10}{e}^{rt}=\alpha -{c}_1-\left(\left(\alpha -{c}_2\right){e}^{-r{T}_2}+\left({c}_2-{c}_1\right){e}^{-r{T}_1}\right){e}^{rt}=\alpha -{c}_1-\left(\left(\alpha -{c}_2\right){e}^{-r\left({T}_2-{T}_1\right)}+{c}_2-{c}_1\right){e}^{r\left(t-{T}_1\right)}= $$
$$ \left(\alpha -{c}_1\right)\left(1-{e}^{r\left(t-{T}_1\right)}\right)-\left({c}_2-\alpha +\left(\alpha -{c}_2\right){e}^{-r\left({T}_2-{T}_1\right)}\right){e}^{r\left(t-{T}_1\right)}= $$
$$ \beta {q}_1^{\prime }(t)+\left(\alpha -{c}_2\right)\left(1-{e}^{-r\left({T}_2-{T}_1\right)}\right){e}^{r\left(t-{T}_1\right)}=\beta {q}_1^{\prime }(t)+\beta {q}_2\left({T}_1\right){e}^{r\left(t-{T}_1\right)}=\beta {q}_1^{\prime }(t)+\beta {q}_1^{\prime \prime }(t). $$

1.2 A.2 Inequalities (2.45)

Due to (2.15) and (2.44), the resource constraint for the low-cost site is written as:

$$ \frac{\alpha -{c}_1}{\beta r}\left(r{T}_1+1-{e}^{-r{T}_1}\right)+\underset{0}{\overset{T_1}{\int }}{q}_1^{\prime \prime }(t) dt={S}_{10}. $$

Insert here \( {q}_1^{\prime \prime }(t)={q}_2\left({T}_1\right){e}^{r\left(t-{T}_1\right)} \)and rearrange, using (2.43), the left-hand side of this equation:

$$ \frac{\alpha -{c}_1}{\beta r}\left(r{T}_1+1-{e}^{-r{T}_1}\right)+\frac{\alpha -{c}_2}{\beta}\left(1-{e}^{-r\left({T}_2-{T}_1\right)}\right)\underset{0}{\overset{T_1}{\int }}{e}^{r\left(t-{T}_1\right)} dt= $$
$$ \frac{\alpha -{c}_1}{\beta r}\left(r{T}_1+1-{e}^{-r{T}_1}\right)+\frac{\alpha -{c}_2}{\beta r}\left(1-{e}^{- rT\left({S}_{20}\right)}\right)\left(1-{e}^{-r{T}_1}\right)={S}_{10}. $$

From this equation, we have it that ∂T1/∂S10 > 0 and by the implicit function theorem:

$$ \frac{\partial {T}_1}{\partial {S}_{20}}=-\frac{\left(\alpha -{c}_2\right){e}^{- rT\left({S}_{20}\right)}{T}^{\prime}\left({S}_{20}\right)\left(1-{e}^{-r{T}_1}\right)}{\left(\alpha -{c}_1\right)\left(1+{e}^{-r{T}_1}\right)+\left(\alpha -{c}_2\right)\left(1-{e}^{- rT\left({S}_{20}\right)}\right){e}^{-r{T}_1}}<0, $$

since T(S20) > 0.

1.3 A.3 Equation (2.51)

Equation (2.49) is fulfilled for the times of switching Tg1 and Tg2:

$$ {c}_{g1}+{v}_{g0}{e}^{r{T}_{g1}}={c}_{c1}+{v}_{c0}{e}^{r{T}_{g1}} $$
$$ {c}_{g2}+{v}_{g0}{e}^{r{T}_{g2}}={c}_{c2}+{v}_{c0}{e}^{r{T}_{g2}}. $$

This is rewritten as

$$ {c}_{c1}-{c}_{g1}=\left({v}_{g0}-{v}_{c0}\right){e}^{r{T}_{g1}} $$
$$ {c}_{c2}-{c}_{g2}=\left({v}_{g0}-{v}_{c0}\right){e}^{r{T}_{g2}} $$

and yields

$$ \frac{c_{c2}-{c}_{g2}}{c_{c1}-{c}_{g1}}={e}^{r\left({T}_{g2}-{T}_{g1}\right)}. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). The Economics of Exhaustible Resources. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_2

Download citation

Publish with us

Policies and ethics