Skip to main content

Anti-Conservationist Effects of the Conservationist Oil Cartel

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

  • 254 Accesses

Abstract

A resource monopoly behaves as a “conservationist” in models of exhaustible resources. It extracts less today and keeps more resource under the ground than the competitive market does. In this chapter, we consider a model of economically recoverable resources and show that, in the presence of a high-cost competitive fringe, the cartel’s “conservationism” turns into a too early and too intensive resource extraction by the fringe. The “anti-conservationism” of the equilibrium extraction path selected by the fringe proves to be a robust property of the model. As a result, the cartel acts as if it was a strategic player planning its long-term moves to accelerate the depletion of competitors’ resources and to aggravate their competitive disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Solution (11.19), (11.20)

The characteristic equation for system (11.17), (11.18) is

$$ \left|\begin{array}{cc}r-\lambda & -r{c}_1/2\\ {}-1/\beta & -\lambda \end{array}\right|={\lambda}^2- r\lambda -r{c}_1/2\beta =0 $$
(11.47)

and the negative root is

$$ \lambda =\left(r-\sqrt{r^2+2r{c}_1/\beta}\right)/2=-\delta . $$

Let us check that time paths (11.19), (11.20) satisfy differential Eqs. (11.17), (11.18). On the one hand, inserting (11.19), (11.20) into (11.17) implies

$$ \dot{P}=0.5r\left(2P-\alpha -{c}_0-{c}_1X\right)=0.5r\left(2\alpha -2\beta \delta {X}^{\ast }{e}^{-\delta t}-\alpha -{c}_0-{c}_1{X}^{\ast}\left(1-{e}^{-\delta t}\right)\right)=0.5r\left(\alpha -{c}_0-{c}_1{X}^{\ast }-2\beta \delta {X}^{\ast }{e}^{-\delta t}+{c}_1{X}^{\ast }{e}^{-\delta t}\right)=0.5r\left({c}_1-2\beta \delta \right){X}^{\ast }{e}^{-\delta t}. $$

On the other hand, differentiating (11.19) yields

$$ \dot{P}=\beta {\delta}^2{X}^{\ast }{e}^{-\delta t}. $$

These two equations are identical if

$$ \beta {\delta}^2=0.5r\left({c}_1-2\beta \delta \right). $$

This is the case for δ =  − λ satisfying the characteristic Eq. (11.47).

1.2 A.2 Solution (11.29), (11.30)

The characteristic equation for system (11.27), (11.28) is

$$ \left|\begin{array}{cc}r-\lambda & -r{c}_{1a}\\ {}-\varphi /\beta & -\lambda \end{array}\right|={\lambda}^2- r\lambda - r\varphi {c}_{1a}/\beta =0. $$
(11.48)

The negative root is \( \lambda =\left(r-\sqrt{r^2+4 r\varphi {c}_{1a}/\beta}\right)/2=-\theta \). Solution (11.29), (11.30) satisfies (11.28):

$$ {\dot{Q}}_a=\theta {Q}_a^{\ast }{e}^{-\theta t}=\theta \varphi \left({Q}_a^{\ast }+{Q}_b^{\ast}\right){e}^{-\theta t}=\varphi \left(\alpha -p\right)/\beta, $$

since c0a = c0b and \( {Q}_a^{\ast }=\varphi \left({Q}_a^{\ast }+{Q}_b^{\ast}\right) \) due to condition (11.26). Insert Eqs. (11.29), (11.30) into (11.27):

$$ {\displaystyle \begin{array}{l}\dot{p}=r\left(p-{c}_{0a}-{c}_{1a}{Q}_a\ \right)=r\left(\alpha -\beta \theta \left({Q}_a^{\ast }+{Q}_b^{\ast}\right){e}^{-\theta t}-{c}_{0a}-{c}_{1a}{Q}_a\right)=\\ {}r\left(\alpha -{c}_{0a}-{c}_{1a}{Q}_a-\beta \theta \left({Q}_a^{\ast }+{Q}_b^{\ast}\right){e}^{-\theta t}\right)=r\left({c}_{1a}\left({Q}_a^{\ast }-{Q}_a\right)-\beta \theta \left({Q}_a^{\ast }+{Q}_b^{\ast}\right){e}^{-\theta t}\right)=\\ {}r\left({c}_{1a}{Q}_a^{\ast }{e}^{-\theta t}-\beta \theta \left({Q}_a^{\ast }+{Q}_b^{\ast}\right){e}^{-\theta t}\right)=r\left({c}_{1a}-\left(\beta \theta /\varphi \right)\right){Q}_a^{\ast }{e}^{-\theta t}.\end{array}} $$

The time derivative of Eq. (11.29) is: \( \dot{p}=\beta {\theta}^2\left({Q}_a^{\ast }+{Q}_b^{\ast}\right){e}^{-\theta t}=\left(\beta {\theta}^2/\varphi \right){Q}_a^{\ast }{e}^{-\theta t} \). This coincides with (11.27) for λ =  − θ satisfying (11.48).

1.3 A.3 Equation (11.36)

Equalization of time derivatives of price for Eqs. (11.34), (11.35) implies:

$$ \frac{r}{2}\left(P-\beta {x}_a-{c}_{0a}-{c}_{1a}{X}_a\right)=r\left(P-{c}_{0b}-{c}_{1b}{X}_b\ \right). $$

Rearrange the terms in this equation and take into account (11.33):

$$ P+\beta {x}_a+{c}_{0a}+{c}_{1a}{X}_a=2{c}_{0b}+2{c}_{1b}{X}_b $$
$$ \alpha -\beta \left({x}_a+{x}_b\right)+\beta {x}_a+{c}_{0a}+{c}_{1a}{X}_a=2{c}_{0b}+{c}_{1b}{X}_b $$
$$ \alpha -{c}_{0a}-\beta {x}_b+{c}_{1a}{X}_a=2{c}_{0b}-2{c}_{0a}+{c}_{1b}{X}_b $$
$$ \beta {x}_b={c}_{1a}\left({X}_a+{X}_a^{\ast}\right)-2\Delta {c}_0-{c}_{1b}{X}_b, $$

because \( \alpha -{c}_{0a}={c}_{1a}{X}_a^{\ast } \) from Eq. (11.40).

1.4 A.4 Characteristic Equation (11.41)

The characteristic equation for system (11.37)–(11.39) is

$$ {\displaystyle \begin{array}{c}\left|\begin{array}{ccc}r-\lambda & 0& -{rc}_{1b}\\ {}-\frac{1}{\beta }& -\frac{c_{1a}}{\beta }-\lambda & \frac{2{c}_{1b}}{\beta}\\ {}0& \frac{c_{1a}}{\beta }& -\frac{2{c}_{1b}}{\beta }-\lambda \end{array}\right|=\left(r-\lambda \right)\left|\begin{array}{cc}-\frac{c_{1a}}{\beta }-\lambda & \frac{2{c}_{1b}}{\beta}\\ {}\frac{c_{1a}}{\beta }& -\frac{2{c}_{1b}}{\beta }-\lambda \end{array}\right|+\frac{1}{\beta}\cdot \frac{rc_{1a}{c}_{1b}}{\beta}\\ {}=\left(r-\lambda \right)\left({\lambda}^2+\frac{c_{1a}+2{c}_{1b}}{\beta}\lambda \right)+\frac{rc_{1a}{c}_{1b}}{\beta^2}=\\ {}-{\lambda}^3+\left(r-\frac{c_{1a}+2{c}_{1b}}{\beta}\right){\lambda}^2+r\frac{c_{1a}+2{c}_{1b}}{\beta}\lambda +\frac{rc_{1a}{c}_{1b}}{\beta^2}=0,\end{array}} $$

which implies:

$$ -\beta {\lambda}^3+\left( r\beta -\left({c}_{1a}+2{c}_{1b}\right)\right){\lambda}^2+r\left({c}_{1a}+2{c}_{1b}\right)\lambda +r{c}_{1a}{c}_{1b}/\beta =0. $$

1.5 A.5 Formulae (11.45), (11.46)

  1. (a)

    Consider Eq. (11.39) for t = 0:

    $$ \beta {\dot{X}}_b(0)={c}_{1a}{X}_a^{\ast }-2\Delta {c}_0 $$

since Xa(0) = Xb(0) = 0. From (11.43):

$$ {\dot{X}}_b(0)={X}_b^{\ast}\left({\sigma}_b{\theta}_1+\left(1-{\sigma}_b\right){\theta}_2\right) $$

hence

$$ {\sigma}_b{\theta}_1+\left(1-{\sigma}_b\right){\theta}_2=\frac{c_{1a}{X}_a^{\ast }-2\Delta {c}_0}{\beta {X}_b^{\ast }} $$
(11.49)

and

$$ {\sigma}_b=\frac{\omega_b-{\theta}_2}{\theta_1-{\theta}_2}=\frac{\theta_2-{\omega}_b}{\theta_2-{\theta}_1} $$

where

$$ {\omega}_b=\frac{c_{1a}{X}_a^{\ast }-2\Delta {c}_0}{\beta {X}_b^{\ast }} $$

which yields (11.46).

  1. (b)

    Consider Eq. (11.37) for t = 0:

$$ \dot{P}(0)=r\left(P(0)-{c}_{0b}\ \right) $$
(11.50)

From Eq. (11.44), the time derivative of the cartel price is:

$$ \dot{P}(t)=\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1^2{e}^{-{\theta}_1t}+\left(1-\xi \right){\theta}_2^2{e}^{-{\theta}_2t}\right], $$

implying that

$$ \dot{P}(0)=\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1^2+\left(1-\xi \right){\theta}_2^2\right] $$

From Eq. (11.44), we also have it that

$$ P(0)=\alpha -\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1+\left(1-\xi \right){\theta}_2\right] $$

Combining the last two equations with (11.50) implies:

$$ \beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1^2+\left(1-\xi \right){\theta}_2^2\right]=r\left\{\alpha -{c}_{0b}-\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1+\left(1-\xi \right){\theta}_2\right]\right\} $$

Rearrange the terms:

$$ \xi {\theta}_1^2+\left(1-\xi \right){\theta}_2^2+r\left(\xi {\theta}_1+\left(1-\xi \right){\theta}_2\right)=\frac{r\left(\alpha -{c}_{0b}\right)}{\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)} $$
$$ \left({\theta}_1^2+r{\theta}_1-{\theta}_2^2-r{\theta}_2\right)\xi +{\theta}_2^2+r{\theta}_2=\frac{r{c}_{1b}{X}_b^{\ast }}{\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)}=\frac{r{c}_{1b}\left(1-\psi \right)}{\beta }, $$

since \( \alpha -{c}_{0b}={c}_{1b}{X}_b^{\ast } \) from (11.40). We have:

$$ \xi =\frac{\omega_a-\left({\theta}_2^2+r{\theta}_2\right)}{\theta_1^2+r{\theta}_1-\left({\theta}_2^2+r{\theta}_2\right)} $$

where ωa = rc1b(1 − ψ)/β, implying that

$$ {\sigma}_a={\psi}^{-1}\left(\frac{\theta_2^2+r{\theta}_2-{\omega}_a}{\theta_2^2+r{\theta}_2-\left({\theta}_1^2+r{\theta}_1\right)}-\left(1-\psi \right){\sigma}_b\right) $$

since ξ = ψσa + (1 − ψ)σb.

  1. (c)

    Let us check that Eq. (11.38) is fulfilled as identity for t = 0:

$$ \beta {\dot{X}}_a(0)=\alpha -P(0)-{c}_{1a}{X}_a^{\ast }+2\Delta {c}_0 $$
(11.51)

From Eqs. (11.43), (11.44), we have it that

$$ \beta {\dot{X}}_a(0)=\beta {X}_a^{\ast}\left({\sigma}_a{\theta}_1+\left(1-{\sigma}_a\right){\theta}_2\right), $$
$$ P(0)=\alpha -\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1+\left(1-\xi \right){\theta}_2\right] $$

Insert these two equations into (11.51):

$$ \beta {X}_a^{\ast}\left({\sigma}_a{\theta}_1+\left(1-{\sigma}_a\right){\theta}_2\right)=\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)\left[\xi {\theta}_1+\left(1-\xi \right){\theta}_2\right]-{c}_{1a}{X}_a^{\ast }+2\Delta {c}_0 $$

Divide both sides by \( \beta \left({X}_a^{\ast }+{X}_b^{\ast}\right) \) and rearrange:

$$ {\displaystyle \begin{array}{l}\psi \left({\sigma}_a{\theta}_1+\left(1-{\sigma}_a\right){\theta}_2\right)={\xi \theta}_1+\left(1-\xi \right){\theta}_2-\frac{c_{1a}{X}_a^{\ast }-2\varDelta {c}_0}{\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)}=\psi \left({\sigma}_a{\theta}_1+\left(1-{\sigma}_a\right){\theta}_2\right)\\ {}+\left(1-\psi \right)\left({\sigma}_b{\theta}_1+\left(1-{\sigma}_b\right){\theta}_2\right)-\frac{c_{1a}{X}_a^{\ast }-2\varDelta {c}_0}{\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)}=\psi \left({\sigma}_a{\theta}_1+\left(1-{\sigma}_a\right){\theta}_2\right)\end{array}} $$

because, due to (11.49):

$$ \left(1-\psi \right)\left({\sigma}_b{\theta}_1+\left(1-{\sigma}_b\right){\theta}_2\right)=\left(1-\psi \right)\frac{c_{1a}{X}_a^{\ast }-2\Delta {c}_0}{\beta {X}_b^{\ast }}=\frac{c_{1a}{X}_a^{\ast }-2\Delta {c}_0}{\beta \left({X}_a^{\ast }+{X}_b^{\ast}\right)} $$

Consequently, (11.51) holds as identity.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). Anti-Conservationist Effects of the Conservationist Oil Cartel. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_11

Download citation

Publish with us

Policies and ethics