Skip to main content

The Oil Cartel and Misallocation of Production

  • Chapter
  • First Online:
Natural Resource Pricing and Rents

Part of the book series: Contributions to Economics ((CE))

Abstract

The oil cartel’s activity causes distortions of the oil industry structure resulting from the spatial misallocation of production. In the long term, production shifting from the low-cost cartel to the high-cost competitive fringe brings about a misallocation of global oil resources. In this chapter we consider a two-region model of resource extraction with investment in reserves development, in which the global allocation of oil resources is determined endogenously. We show that if the cartel’s advantage in production costs over the competitive fringe is considerable, the distorting effects of the cartel are substantial, and the efficiency losses on the industry level may be significant. The cartel captures a part of consumer benefits at the cost of significant losses from resource misallocation and deadweight losses. These losses, however, can be reduced due to technological changes improving the competitiveness of the fringe.

This chapter is based on the unfinished paper by Barry Ickes and Georgy Trofimov.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asker J, Collard-Wexler A, Loecker JD (2017) Market power, production (mis)allocation and OPEC. NBER Working Paper No. 23801, National Bureau of Economic Research, INC, September 2017

    Google Scholar 

  • BP Statistical Review of World Energy – 2020 edition. https://nangs.org/analytics/bp-statistical-review-of-world-energy. Accessed 25 Nov 2020

  • Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39:137–175

    Article  Google Scholar 

  • Pindyck R (1978) The optimal exploration and production of non-renewable resources. J Polit Econ 86:841–861

    Article  Google Scholar 

  • Smith J (2009) World oil: Market or mayhem. J Econ Perspect 23:145–164

    Article  Google Scholar 

  • Solow R (1974) The economics of resources or the resources of economics. Am Econ Rev 64(2):1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.1 Condition (10.20)

Investment in creation of the initial reserve stock is

$$ {i}_a={z}_a{s}_a={z}_a{x}_a/{\delta}_a{\xi}_a={z}_a{x}_a{\left(2{\delta}_ar{z}_a\right)}^{-1/2}={x}_a{\left(2r{z}_a/{\delta}_a\right)}^{1/2}/2r={x}_a{\xi}_a/2r, $$

since ξa = xa/δasa and due to (10.11). From Eq. (10.18), the firm’s net present value (10.19) is

$$ {V}_a={r}^{-1}{\pi}_a-{i}_a={x}_a^2/2r{\delta}_a{s}_a-{x}_a{\xi}_a/2r={x}_a\left({\xi}_a-{\xi}_a\right)/2r=0. $$

1.2 A.2 Equations (10.27), (10.28)

From Eqs. (10.22), (10.24), the first-order condition for the cartel is:

$$ {P}_t+{x}_{At}\frac{\partial {P}_t}{\partial {x}_{At}}-\frac{x_{At}}{\delta_a{s}_{At}}-{z}_a=0. $$

We use the fact that ∂Pt/∂xAt =  − 1/(μ + δbsBt) and rearrange the left-hand side:

$$ {\displaystyle \begin{array}{l}{P}_t+{x}_{At}\frac{\partial {P}_t}{\partial {x}_{At}}-\frac{x_{At}}{\delta_a{s}_{At}}-{z}_a={P}_t-\frac{x_{At}}{\mu +{\delta}_b{s}_{Bt}}-\frac{x_{At}}{\delta_a{s}_{At}}-{z}_a\\ {}\kern5em ={P}_t-\frac{\left(\mu +{\delta}_a{s}_{At}+{\delta}_b{s}_{Bt}\right){x}_{At}}{\left(\mu +{\delta}_b{s}_{Bt}\right){\delta}_a{s}_{At}}-{z}_a={P}_t-\frac{x_{At}}{\left({\sigma}_{Bt}+{\sigma}_{Dt}\right){\delta}_a{s}_{At}}-{z}_a\\ {}\kern5em ={P}_t-\frac{\xi_{At}}{\sigma_{Bt}+{\sigma}_{Dt}}-{z}_a.\end{array}} $$

This yields (10.27).

Consider Eq. (10.28). From Eqs. (10.8), (10.27), the supply functions are:

$$ {x}_{At}={\delta}_a{s}_{At}\left(1-{\sigma}_{At}\right)\left({P}_t-{z}_a\right),{x}_{Bt}={\delta}_b{s}_{Bt}\left({P}_t-{z}_b\right). $$

Inserting these functions into the market-clearing condition (10.3) implies the equation for Pt:

$$ {\sigma}_{At}{E}_t^C\left(1-{\sigma}_{At}\right)\left({P}_t-{z}_a\right)+{\sigma}_{Bt}{E}_t^C\left({P}_t-{z}_b\right)=\mu \left(\alpha -{P}_t\right), $$

because \( {\delta}_j{s}_{Jt}={\sigma}_{Jt}{E}_t^C \) for J = A, B, D = αμ. This equation can be rewritten as

$$ {\sigma}_{At}\left(1-{\sigma}_{At}\right)\left({P}_t-{z}_a\right)+{\sigma}_{Bt}\left({P}_t-{z}_b\right)={\sigma}_{Dt}\left(\alpha -{P}_t\right). $$

and the market-clearing cartel price is equal to

$$ {\displaystyle \begin{array}{l}{P}_t=\frac{\sigma_{At}\left(1-{\sigma}_{At}\right){z}_a+{\sigma}_{Bt}{z}_b+{\sigma}_{Dt}\alpha }{\sigma_{At}\left(1-{\sigma}_{At}\right)+{\sigma}_{Bt}+{\sigma}_{Dt}}=\frac{\sigma_{At}\left(1-{\sigma}_{At}\right){z}_a+{\sigma}_{Bt}{z}_b+{\sigma}_{Dt}\alpha }{1-{\sigma}_{At}^2}\\ {}\kern5em ={\theta}_{At}{z}_a+{\theta}_{Bt}{z}_b+{\theta}_{Dt}\alpha .\end{array}} $$

1.3 A.3 Proposition 10.2

The cartel price Eqs. (10.30) and (10.31) are compatible if σA satisfies:

$$ {\xi}_b+{z}_b=\frac{\xi_a}{1-{\sigma}_A}+{z}_a $$

or 1 − σA = ξa/(ξb + zb − za), implying (10.33):

$$ {\sigma}_A=1-\frac{\xi_a}{\xi_b+{z}_b-{z}_a}=\frac{\Delta P}{\xi_a+\Delta P}, $$

since ΔP = Δξ + Δz, where Δξ = ξb − ξa, Δz = zb − za.

Equation (10.31) is compatible with (10.32) represented as

$$ P=\frac{\sigma_A\left(1-{\sigma}_A\right){z}_a+{\sigma}_B{z}_b+{\sigma}_D\alpha }{1-{\sigma}_A^2}, $$

if the following equation is fulfilled:

$$ \frac{\xi_a}{1-{\sigma}_A}+{z}_a=\frac{\sigma_A\left(1-{\sigma}_A\right){z}_a+{\sigma}_B{z}_b+{\sigma}_D\alpha }{1-{\sigma}_A^2}. $$

Rearrange both sides:

$$ \left(1+{\sigma}_A\right){\xi}_a+\left(1-{\sigma}_A^2\right){z}_a={\sigma}_A\left(1-{\sigma}_A\right){z}_a+{\sigma}_B{z}_b+{\sigma}_D\alpha $$
$$ \left(1+{\sigma}_A\right){\xi}_a+\left(1-{\sigma}_A\right){z}_a={\sigma}_B{z}_b+{\sigma}_D\alpha $$

or, since σD = 1 − σA − σB,

$$ \left(1+{\sigma}_A\right){\xi}_a-\left(1-{\sigma}_A\right)\left(\alpha -{z}_a\right)={\sigma}_B\left({z}_b-\alpha \right). $$

From Eq. (10.31), ξa = (1 − σA)(P − za), hence

$$ {\sigma}_B=\left(1-{\sigma}_A\right)\frac{\alpha -{z}_a-\left(1+{\sigma}_A\right)\left(P-{z}_a\right)}{\alpha -{z}_b}. $$

We have:

$$ \left(1+{\sigma}_A\right)\left(P-{z}_a\right)=\frac{\xi_a+2\Delta P}{\xi_a+\Delta P}\left(P-{z}_a\right)={\xi}_a+2\Delta P=-{z}_a-p+2P $$

due to (10.33) and since p = ξa + za.

Consequently

$$ {\sigma}_B=\left(1-{\sigma}_A\right)\frac{\alpha +p-2P}{\alpha -{z}_b}=\left(1-{\sigma}_A\right)\frac{2\left(\overline{P}-P\right)}{\alpha -{z}_b}. $$

1.4 A.4 The Pure Monopoly Case

Equating the right-hand sides of Eqs. (10.31′) and (10.32′) yields the following equation on σA:

$$ \frac{\xi_a}{1-{\sigma}_A}+{z}_a=\frac{\sigma_A}{1+{\sigma}_A}{z}_a+\frac{\alpha }{1+{\sigma}_A}. $$

Rearrange the terms:

$$ \frac{\xi_a}{1-{\sigma}_A}=\frac{\alpha -{z}_a}{1+{\sigma}_A} $$
$$ \left(1+{\sigma}_A\right){\xi}_a=\left(1-{\sigma}_A\right)\left(\alpha -{z}_a\right) $$

and obtain:

$$ {\sigma}_A=\frac{\alpha -{z}_a-{\xi}_a}{\alpha -{z}_a+{\xi}_a}=\frac{\alpha -p}{\alpha -p+2{\xi}_a}. $$

1.5 A.5 Proposition 10.3

We have it from condition (10.29) that ξJ = xJ/δjsJ = ξj implying that xJ = δjsJξj for J = A, B and j = a, b. This yields xJ = (σJ/σD)μξj because σJ = δjsJ/EC and σD = μ/EC.

1.6 A.6 Equations (10.41), (10.42)

From Eqs. (10.31), (10.40):

$$ {\displaystyle \begin{array}{l}{\pi}_A={Px}_A-{c}_a\left({x}_A,{s}_A\right)-{i}_A=\left(\frac{\xi_a}{1-{\sigma}_A}+{z}_a\right){x}_A-\frac{x_A^2}{2{\delta}_a{s}_A}-{z}_a{x}_A=\frac{\xi_a{x}_A}{1-{\sigma}_A}-\frac{x_A^2}{2{\delta}_a{s}_A}\\ {}\kern4em =\frac{\xi_a{x}_A}{1-{\sigma}_A}-\frac{\xi_a{x}_A}{2}=\left(\frac{1}{1-{\sigma}_A}-\frac{1}{2}\right){\xi}_a{x}_A=\frac{1+{\sigma}_A}{1-{\sigma}_A}\cdot \frac{\xi_a{x}_A}{2}\kern0.5em .\end{array}} $$

The cartel value in period 0 is VA = r−1πA − zasA. Since xA = δasAξa and from Eq. (10.29) we have:

$$ {z}_a{s}_A={z}_a\frac{x_A}{\delta_a{\xi}_a}=\frac{z_a{x}_A}{{\left(2{\delta}_ar{z}_a\right)}^{1/2}}. $$
(10.50)

Hence

$$ {\displaystyle \begin{array}{l}{V}_A={r}^{-1}\frac{1+{\sigma}_A}{1-{\sigma}_A}\cdot \frac{\xi_a{x}_A}{2}-\frac{z_a{x}_A}{{\left(2{\delta}_a{rz}_a\right)}^{1/2}}=\left(\frac{1+{\sigma}_A}{1-{\sigma}_A}\cdot \frac{\xi_a}{2}-\frac{z_ar}{{\left(2{\delta}_a{rz}_a\right)}^{1/2}}\right){x}_A/r\\ {}\kern5em =\left(\frac{1+{\sigma}_A}{1-{\sigma}_A}\cdot \frac{\xi_a}{2}-\frac{{\left(2{rz}_a/{\delta}_a\right)}^{1/2}}{2}\right){x}_A/r=\left(\frac{1+{\sigma}_A}{1-{\sigma}_A}\cdot \frac{\xi_a}{2}-\frac{\xi_a}{2}\right){x}_A/r\\ {}\kern5em =\left(\frac{1+{\sigma}_A}{1-{\sigma}_A}-1\right){x}_A{\xi}_a/2r=\frac{2{\sigma}_A{\xi}_a}{1-{\sigma}_A}{x}_A/2r=\frac{\sigma_A{\xi}_a}{1-{\sigma}_A}{x}_A/r={x}_A\Delta P/r,\end{array}} $$

because, from Eq. (10.33),

$$ \Delta P=\frac{\sigma_A{\xi}_a}{1-{\sigma}_A}. $$

Equations (10.50), (10.29) imply that

$$ {i}_{0A}={z}_a{s}_A={z}_a{x}_A{\left(2{\delta}_ar{z}_a\right)}^{-1/2}={x}_A{\left(2r{z}_a/{\delta}_a\right)}^{1/2}{(2r)}^{-1}={r}^{-1}{x}_A{\xi}_a/2 $$
$$ ={r}^{-1}{x}_A\left(p-{z}_a\right)/2. $$

This means that the initial investment by the cartel equals the present value of the cartel’s net competitive profit shown by triangle zapG in Fig. 10.5.

1.7 A.7 Equation (10.44)

The loss of consumer surplus due to cartel pricing is

$$ {\displaystyle \begin{array}{l}\varDelta Q={Q}^C-Q=\mu \left({\left(\alpha -P\right)}^2-{\left(\alpha -p\right)}^2\right)/2r=\mu \left(p-P\right)\left(\left(\alpha -P\right)+\left(\alpha -p\right)\right)/2r\\ {}\kern1.6em =-\varDelta P\left(D(P)+D(p)\right)/2r.\end{array}} $$
(10.51)

From Eqs. (10.42), (10.51) and (10.3):

$$ \varDelta {W}^C=\varDelta Q+\varDelta {V}_A=-\left(D(P)+D(p)\right)\varDelta P/2r+{x}_A\varDelta P/r=-\left(D(P)+D(p)-2{x}_A\right)\varDelta P/2r=-\left({x}_B+{x}_a-{x}_A\right)\varDelta P/2r=-\left({x}_B-\varDelta {x}_A\right)\varDelta P/2r. $$

From Eq. (10.38), −ΔxA = xB − ΔD and, consequently, ΔWC =  − (2xB − ΔD)ΔP/2r =  − (xB + (μ/2)ΔP)ΔP/r =  − (xBΔP + (μ/2)(ΔP)2)/r, since −ΔD = μΔP.

1.8 A.8 Equations (10.47)–(10.49)

From Proposition 10.2, the demand share is

$$ {\sigma}_D=\left(1-{\sigma}_A\right)\left(1-\phi \right)=\left(1-{\sigma}_A\right)\frac{P+\Delta P-{z}_b}{\alpha -{z}_b}=\left(1-{\sigma}_A\right)\frac{\xi_b+\Delta P}{\alpha -{z}_b}. $$
(10.52)

Equations (10.42), (10.39), (10.33), (10.52) imply that

$$ \kern1em \varDelta {V}_A={x}_A\varDelta P/r=\mu \frac{\sigma_A}{r{\sigma}_D}{\xi}_a\varDelta P=\mu \frac{\sigma_A\left(\alpha -{z}_b\right)}{r\left(1-{\sigma}_A\right)\left({\xi}_b+\varDelta P\right)}{\xi}_a\varDelta P=\mu \frac{\Delta P\left(\alpha -{z}_b\right)}{r{\xi}_a\left({\xi}_b+\varDelta P\right)}{\xi}_a\varDelta P=\frac{\mu \left(\alpha -{z}_b\right){\left(\Delta P\right)}^2}{r\left(2{\xi}_b+{z}_b-{\xi}_a-{z}_a\right)}=\frac{\mu \left(\alpha -{z}_b\right){\left(\Delta P\right)}^2}{2r\left({\xi}_b+{z}_b-0.5{\xi}_a-0.5\left({z}_b+{z}_a\right)\right)}=\frac{\mu \left(\alpha -{z}_b\right){\left(\Delta P\right)}^2}{2r\left(P-\tilde{z}-0.5{\xi}_a\right)}. $$

From Eq. (10.21), W = μ(α − p)2/2r, hence

$$ \frac{\Delta {V}_A}{W}=\frac{\left(\alpha -{z}_b\right){\left(P-p\right)}^2}{\left(P-\overset{\sim }{z}-0.5{\xi}_a\right){\left(\alpha -p\right)}^2}. $$

From Eqs. (10.45), (10.34), (10.39), (10.52) we have it that

$$ -\Delta {W}_1={x}_B\Delta P/r=\mu \frac{\sigma_B}{r{\sigma}_D}{\xi}_b\Delta P=\mu \frac{2\left(\overline{P}-P\right)}{r\left({\xi}_b+\Delta P\right)}{\xi}_b\Delta P=\frac{\mu \left(\overline{P}-P\right){\xi}_b\Delta P}{r\left(P-\overset{\sim }{z}-0.5{\xi}_a\right)}. $$

Consequently

$$ \frac{\Delta {W}_1}{W}=-\frac{2{\xi}_b\left(\overline{P}-P\right)\left(P-p\right)}{\left(P-\overset{\sim }{z}-0.5{\xi}_a\right){\left(\alpha -p\right)}^2}. $$

From Eqs. (10.46), (10.21), ΔW2 =  − μ(ΔP)2/2r and

$$ \frac{\Delta {W}_2}{W}=-\frac{{\left(P-p\right)}^2}{{\left(\alpha -p\right)}^2}. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, A., Trofimov, G. (2021). The Oil Cartel and Misallocation of Production. In: Natural Resource Pricing and Rents. Contributions to Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-76753-2_10

Download citation

Publish with us

Policies and ethics