Skip to main content

Data Mining Techniques in IoT Knowledge Discovery: A Survey

  • Conference paper
  • First Online:
Internet of Things and Connected Technologies (ICIoTCT 2020)

Abstract

IoT is a buzzword nowadays and of course, it should be. The widespread of electronic and electromechanical devices with connecting ability to the Internet makes IoT be dominant from the user, manufacturer and services/goods provider perspective. Via IoT, the status of almost anything can be tracked, configured and maintained by different computing techniques using user devices or remotely from server ends. Determination of status can be easily known with data mining techniques that follow a distinct ladder until the representation of knowledge. In this survey work, we examined articles published from 2010 to date in the area of IoT. We followed a systematic literature review approach and scrutinize the different data mining steps followed by various scholars, and further classify the data mining techniques used in IoT as a conventional and non-conventional approach. Data cleaning, regression, model visualization, and summarization techniques were considered as challenging tasks due to the nature of IoT settings. This in turn demanded a new direction of research so as to come up with enhanced service provision in the area of IoT. Overlooked data mining techniques and comparison of the different approaches were criticized and reported. Moreover, the interdependency of IoT technologies with data mining approaches is discussed. Ultimately, an attempt has been made to indicate the research trend of IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashton, K.: That ‘Internet of Things’ thing. RFID J. 22(7), 97–114 (2009)

    Google Scholar 

  2. Sukode, S., Gite, S., Agrawal, H.: Context aware framework in IoT: a survey. Int. J. 4(1), 1–9 (2015)

    Google Scholar 

  3. Evans, D.: The Internet of Things how the next evolution of the internet is changing everything (April 2011). White Paper by Cisco Internet Business Solutions Group (IBSG) (2012)

    Google Scholar 

  4. Shi, F., et al.: A survey of data semantization in Internet of Things. Sensors 18(1), 313 (2018)

    Article  Google Scholar 

  5. Uviase, O., Gerald, K.: IoT architectural framework: connection and integration framework for IoT systems. arXiv preprint arXiv:1803.04780 (2018)

  6. Lin, K., et al.: Device clustering algorithm based on multimodal data correlation in cognitive Internet of Things. IEEE Internet Things J. 5(4), 2263–2271 (2017)

    Article  Google Scholar 

  7. Wu, Q., et al.: Cognitive Internet of Things: a new paradigm beyond connection. IEEE Internet Things J. 1(2), 129–143 (2014)

    Article  Google Scholar 

  8. Patel, M., Minal, B.: Raw data processing framework for IoT. In: 2019 11th International Conference on Communication Systems & Networks (COMSNETS). IEEE (2019)

    Google Scholar 

  9. Savaliya, A., Aakash, B., Jitendra, B.: Application of Data Mining Techniques in IoT: A Short (2018)

    Google Scholar 

  10. Tapedia, K, Wagh, A.: Data mining for various Internets of Things applications. Int. J. Res. Advent Technol., 127–132 (2016)

    Google Scholar 

  11. Okoli, C., Schabram, K.: A Guide to Conducting a Systematic Literature Review of Information Systems Research (2010)

    Google Scholar 

  12. Kumar, A., Tyagi, A.K., Tyagi, S.K.: Data mining: various issues and challenges for future - a short discussion on data mining issues for future work. Int. J. Emerg. Technol. Adv. Eng. 4(1), 1–8 (2014)

    Google Scholar 

  13. Al Zamil, M.G., et al.: An annotation technique for in-home smart monitoring environments. IEEE Access 6, 1471–1479 (2017)

    Article  Google Scholar 

  14. He, W., Yan, G., Da, X.L. : Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inform. 10(2), 1587–1595 (2014)

    Article  Google Scholar 

  15. Akbar, A., et al.: Real-time probabilistic data fusion for large-scale IoT applications. IEEE Access 6, 10015–10027 (2018)

    Article  Google Scholar 

  16. Elmisery, A.M., Sertovic, M., Gupta, B.B.: Cognitive privacy middleware for deep learning mashup in environmental IoT. IEEE Access 6, 8029–8041 (2017)

    Article  Google Scholar 

  17. Quick, D., Kim-Kwang, R.C.: IoT device forensics and data reduction. IEEE Access 6, 47566–47574 (2018)

    Article  Google Scholar 

  18. Verma, P., Sood, S.K.: Fog assisted-IoT enabled patient health monitoring in smart homes. IEEE Internet Things J. 5(3), 1789–1796 (2018)

    Article  Google Scholar 

  19. Du, M., et al.: Big data privacy preserving in multi-access edge computing for heterogeneous Internet of Things. IEEE Commun. Mag. 56(8), 62–67 (2018)

    Article  Google Scholar 

  20. Ganz, F., et al.: A practical evaluation of information processing and abstraction techniques for the Internet of Things. IEEE Internet Things J. 2(4), 340–354 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gaura, E.I., et al.: Edge mining the Internet of Things. IEEE Sensors J. 13(10), 3816–3825 (2013)

    Google Scholar 

  22. Puschmann, D., Barnaghi, P., Tafazolli, R.: Using LDA to uncover the underlying structures and relations in smart city data streams. IEEE Syst. J. 12(2), 1755–1766 (2017)

    Article  Google Scholar 

  23. Liu, Y., et al.: Exploring data validity in transportation systems for smart cities. IEEE Commun. Mag. 55(5), 26–33 (2017)

    Article  Google Scholar 

  24. Liu, W., Nakauchi, K., Shoji, Y.: A neighbor-based probabilistic broadcast protocol for data dissemination in mobile IoT networks. IEEE Access 6, 12260–12268 (2018)

    Article  Google Scholar 

  25. Zhou, J., et al.: An efficient multidimensional fusion algorithm for IoT data based on partitioning. Tsinghua Sci. Technol. 18(4), 369–378 (2013)

    Article  Google Scholar 

  26. Hu, L., et al.: Semantic representation with heterogeneous information network using matrix factorization for clustering in the Internet of Things. IEEE Access 7, 31233–31242 (2019)

    Article  Google Scholar 

  27. Tianrui, Z., Mingqi, W., Bin, L.: An efficient parallel mining algorithm representative pattern set of large-scale item sets in IoT. IEEE Access 6, 79162–79173 (2018)

    Article  Google Scholar 

  28. Sui, P., Li, X., Bai, Y.: A study of enhancing privacy for intelligent transportation systems: k-correlation privacy model against moving preference attacks for location trajectory data. IEEE Access 5, 24555–24567 (2017)

    Article  Google Scholar 

  29. Tang, M., et al.: Mining collaboration patterns between apis for mashup creation in web of things. IEEE Access 7, 14206–14215 (2019)

    Article  Google Scholar 

  30. Huang, J., et al.: Efficient classification of distribution-based data for Internet of Things. IEEE Access 6, 69279–69287 (2018)

    Article  Google Scholar 

  31. Kaur, J., Kaur, K.: A fuzzy approach for an IoT-based automated employee performance appraisal. Comput. Mater. Continua 53(1), 24–38 (2017)

    Google Scholar 

  32. Zhu, X., et al.: Mining effective patterns of chinese medicinal formulae using top-k weighted association rules for the internet of medical things. IEEE Access 6, 57840–57855 (2018)

    Article  Google Scholar 

  33. Zhang, Z., Wang, Y., Xie, L.: A novel data integrity attack detection algorithm based on improved grey relational analysis. IEEE Access 6, 73423–73433 (2018)

    Article  Google Scholar 

  34. Zhang, Q., Almulla, M., Boukerche, A.: An improved scheme for key management of RFID in vehicular Adhoc networks. IEEE Lat. Am. Trans. 11(6), 1286–1294 (2013)

    Article  Google Scholar 

  35. Choi, S., et al.: Chrological big data curation: a study on the enhanced information retrieval system. IEEE Access 5, 11269–11277 (2016)

    Article  Google Scholar 

  36. Gu, Y., Ren, F.: Energy-efficient indoor localization of smart hand-held devices using bluetooth. IEEE Access 3, 1450–1461 (2015)

    Article  Google Scholar 

  37. Wang, W., Wang, Q., Sohraby, K.: Multimedia sensing as a service (MSAAS): exploring resource saving potentials of at cloud-edge IoT and fogs. IEEE Internet Things J. 4(2), 487–495 (2016)

    Google Scholar 

  38. Li, S., et al.: An improved information security risk assessments method for cyber-physical-social computing and networking. IEEE Access 6, 10311–10319 (2018)

    Article  Google Scholar 

  39. Abeshu, A., Chilamkurti, N.: Deep learning: the frontier for distributed attack detection in fog-to-things computing. IEEE Commun. Mag. 56(2), 169–175 (2018)

    Article  Google Scholar 

  40. Fernandez Molanes, R., et al.: Deep learning and reconfigurable platforms in the Internet of Things: challenges and opportunities in algorithms and hardware. IEEE Ind. Electron. Mag. 12(2), 36–49 (2018)

    Article  Google Scholar 

  41. Lei, L., Qi, J., Zheng, K.: Patent analytics based on feature vector space model: a case of IoT. IEEE Access 7, 45705–45715 (2019)

    Article  Google Scholar 

  42. Zamil, A., Mohammed, G., et al.: An annotation technique for in-home smart monitoring environments. IEEE Access 6, 1471–1479 (2017)

    Article  Google Scholar 

  43. Zhang, D., et al.: NextMe: localization using cellular traces in Internet of Things. IEEE Trans. Ind. Inform. 11(2), 302–312 (2015)

    Article  Google Scholar 

  44. Gao, T., et al.: Interest-aware service association rule creation for service recommendation and linking mode recommendation in user-generated service. IEEE Access 6, 57721–57737 (2018)

    Article  Google Scholar 

  45. Zdravevski, E., et al.: Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering. IEEE Access 5, 5262–5280 (2017)

    Article  Google Scholar 

  46. Liu, S., et al.: Internet of Things monitoring system of modern eco-agriculture based on cloud computing. IEEE Access 7, 37050–37058 (2019)

    Article  Google Scholar 

  47. Tian, Q., Li, J., Liu, H.: A method for guaranteeing wireless communication based on a combination of deep and shallow learning. IEEE Access 7, 38688–38695 (2019)

    Article  Google Scholar 

  48. Farruggia, A., Magro, R., Vitabile, S.: A text based indexing system for mammographic image retrieval and classification. Fut. Gener. Comput. Syst. 37, 243–251 (2014)

    Article  Google Scholar 

  49. Ashokkumar, K., Sam, B., Arshadprabhu, R.: Cloud based intelligent transport system. Proc. Comput. Sci. 50, 58–63 (2015)

    Article  Google Scholar 

  50. Jiang, H., et al.: A secure and scalable storage system for aggregate data in IoT. Fut. Gener. Comput. Syst. 49, 133–141 (2015)

    Article  Google Scholar 

  51. Villalba, Á., et al.: servIoTicy and iServe: a scalable platform for mining the IoT. Proc. Comput. Sci. 52, 1022–1027 (2015)

    Article  Google Scholar 

  52. Koo, D., Kalyan, P., John Matthews, C.: Towards sustainable water supply: schematic development of big data collection using Internet of Things (IoT). Proc. Eng. 118, 489–497 (2015)

    Article  Google Scholar 

  53. Xiao, B., Kanter, T., Rahmani, R.: Constructing context-centric data objects to enhance logical associations for IoT entities. Proc. Comput. Sci. 52, 1095–1100 (2015)

    Article  Google Scholar 

  54. Alam, F., et al.: Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Proc. Comput. Sci. 98, 437–442 (2016)

    Article  Google Scholar 

  55. Xia, M., et al.: Closed-loop design evolution of engineering system using condition monitoring through Internet of Things and cloud computing. Comput. Netw. 101, 5–18 (2016)

    Article  Google Scholar 

  56. Akhbar, F., et al.: Outlook on moving of computing services towards the data sources. Int. J. Inf. Manage. 36(4), 645–652 (2016)

    Article  Google Scholar 

  57. Gunupudi, R.K., et al.: Clapp: a self constructing feature clustering approach for anomaly detection. Fut. Gener. Comput. Syst. 74, 417–429 (2017)

    Article  Google Scholar 

  58. Suzuki, N., Matsuno, H.: Radio wave environment analysis at different locations based on frequent pattern mining. Proc. Comput. Sci. 112, 1396–1403 (2017)

    Article  Google Scholar 

  59. Rashid, M.M., Gondal, I., Kamruzzaman, J.: Dependable large scale behavioral patterns mining from sensor data using hadoop platform. Inf. Sci. 379, 128–145 (2017)

    Article  Google Scholar 

  60. Li, J., et al.: Mining repeating pattern in packet arrivals: metrics, models, and applications. Inf. Sci. 408, 1–22 (2017)

    Article  Google Scholar 

  61. Guo, K., Tang, Y., Zhang, P.: CSF: crowdsourcing semantic fusion for heterogeneous media big data in the Internet of Things. Inf. Fusion 37, 77–85 (2017)

    Article  Google Scholar 

  62. Rodríguez, S., Gualotuna, T., Grilo, C.: A system for the monitoring and predicting of data in precision agriculture in a rose greenhouse based on wireless sensor networks. Proc. Comput. Sci. 121, 306–313 (2017)

    Article  Google Scholar 

  63. Tsai, C.-W., Liu, S.-J., Wang, Y.-C.: A parallel metaheuristic data clustering framework for cloud. J. Parallel Distrib. Comput. 116, 39–49 (2018)

    Article  Google Scholar 

  64. Chen, J., et al.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2), 157–164 (2013)

    Article  MathSciNet  Google Scholar 

  65. Anagnostopoulos, I., Zeadally, S., Exposito, E.: Handling big data: research challenges and future directions. J. Supercomput. 72(4), 1494–1516 (2016). https://doi.org/10.1007/s11227-016-1677-z

    Article  Google Scholar 

  66. Deshpande, P., Brijesh, I.: Research directions in the internet of everything (IoET). In: 2017 International Conference on Computing, Communication and Automation (ICCCA). IEEE (2017)

    Google Scholar 

  67. Mahdavinejad, M.S., et al.: Machine learning for Internet of Things data analysis: a survey. Digit. Commun. Netw. 4(3), 161–175 (2018)

    Article  Google Scholar 

  68. Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data with augmented and virtual reality: challenges and research agenda. J. Big Data 2(1), 1–27 (2015). https://doi.org/10.1186/s40537-015-0031-2

    Article  Google Scholar 

  69. Ji, Y.-K., Kim, Y.-I., Park, S.: Big data summarization using semantic feature for IoT on cloud. Contemp. Eng. Sci. 7(21–24), 1095–1103 (2014)

    Article  Google Scholar 

  70. Bonomi, F., et al.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asrat Mulatu Beyene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabdo, B.M., Beyene, A.M. (2021). Data Mining Techniques in IoT Knowledge Discovery: A Survey. In: Misra, R., Kesswani, N., Rajarajan, M., Bharadwaj, V., Patel, A. (eds) Internet of Things and Connected Technologies. ICIoTCT 2020. Advances in Intelligent Systems and Computing, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-76736-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76736-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76735-8

  • Online ISBN: 978-3-030-76736-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics