Advertisement

User-Generated Pseudonyms Through Merkle Trees

Conference paper
  • 120 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12703)

Abstract

A pseudonymisation technique based on Merkle trees is described in this paper. More precisely, by exploiting inherent properties of the Merkle trees as cryptographic accumulators, we illustrate how user-generated pseudonyms can be constructed, without the need of a third party. Each such pseudonym, which depends on several user’s identifiers, suffices to hide these original identifiers, whilst the unlinkability property between any two different pseudonyms for the same user is retained; at the same time, this pseudonymisation scheme allows the pseudonym owner to easily prove that she owns a pseudonym within a specific context, without revealing information on her original identifiers. Compared to other user-generated pseudonymisation techniques which utilize public key encryption algorithms, the new approach inherits the security properties of a Merkle tree, thus achieving post-quantum security.

Keywords

Data minimisation General data protection regulation Merkle trees Personal data Pseudonymisation 

Notes

Acknowledgment

The authors would like to thank the anonymous reviewers for their very useful comments which helped to improve the paper.

References

  1. 1.
    Akil, M., Islami, L., Fischer-Hübner, S., Martucci, L.A., Zuccato, A.: Privacy-preserving identifiers for IoT: a systematic literature review. IEEE Access 8, 168470–168485 (2020).  https://doi.org/10.1109/ACCESS.2020.3023659CrossRefGoogle Scholar
  2. 2.
    Alshammari, M., Simpson, A.: Towards a principled approach for engineering privacy by design. In: Schweighofer, E., Leitold, H., Mitrakas, A., Rannenberg, K. (eds.) APF 2017. LNCS, vol. 10518, pp. 161–177. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67280-9_9CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature 549, 188–194 (2017).  https://doi.org/10.1038/nature23461CrossRefGoogle Scholar
  4. 4.
    Brassard, G., Høyer, P., Tapp, A.: Quantum algorithm for the collision problem. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms. Springer, New York (2016).  https://doi.org/10.1007/978-1-4939-2864-4_304CrossRefGoogle Scholar
  5. 5.
    Aumasson, J.-P., et al.: SPHINCS+ - submission to the 2nd round of the NIST post-quantum project. Specificatin document (2019). https://sphincs.org/data/sphincs+-round2-specification.pdf
  6. 6.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_1CrossRefGoogle Scholar
  7. 7.
    Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_36CrossRefGoogle Scholar
  8. 8.
    Berman, P., Karpinski, M., Nekrich, Y.: Optimal trade-off for Merkle tree traversal. Theor. Comput. Sci. 372(1), 22–36 (2007).  https://doi.org/10.1016/j.tcs.2006.11.029MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. PQCrypto 2011: Post-Quantum Cryptography, pp. 117–129 (2011)Google Scholar
  10. 10.
    Buchmann, J.A., Butin, D., Göpfert, F., Petzoldt, A.: Post-quantum cryptography: state of the art. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp. 88–108. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49301-4_6CrossRefzbMATHGoogle Scholar
  11. 11.
    Buchmann, J., García, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006).  https://doi.org/10.1007/11941378_25CrossRefGoogle Scholar
  12. 12.
    Chatzistefanou, V., Limniotis, K.: On the (non-)anonymity of anonymous social networks. In: Katsikas, S.K., Zorkadis, V. (eds.) e-Democracy 2017. CCIS, vol. 792, pp. 153–168. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71117-1_11CrossRefGoogle Scholar
  13. 13.
    Dworkin, M.: Recommendation for block cipher modes of operation: galois/counter mode (GCM) and GMAC. NIST Special Publication 800–38D (2007)Google Scholar
  14. 14.
    European Union Agency for Cybersecurity: Algorithms, key sizeand parameters report (2014).  https://doi.org/10.2824/36822
  15. 15.
    European Union Agency for Cybersecurity: Recommendations on shaping technology according to GDPR provisions - an overview on data pseudonymisation (2018).  https://doi.org/10.2824/74954
  16. 16.
    European Union Agency for Cybersecurity: Pseudonymisation Techniques and Best Practices (2019).  https://doi.org/10.2824/247711
  17. 17.
    European Union Agency for Cybersecurity: Data Pseudonymisation: Advanced Techniques and use cases (2021).  https://doi.org/10.2824/860099
  18. 18.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42, Article 14 (2010).  https://doi.org/10.1145/1749603.1749605
  19. 19.
    Hansen, M., Jensen, M., Rost, M.: Protection goals for privacy engineering. In Proceedings of the 2015 IEEE Security and Privacy Workshops (SPW 2015), pp. 159–166. IEEE (2015).  https://doi.org/10.1109/SPW.2015.13
  20. 20.
    Huelsing, A., Butin, D. Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS: eXtended Merkle Signature Scheme. RFC 8391 (2018). https://rfc-editor.org/rfc/rfc8391.txt
  21. 21.
    Kandappu, T., Sivaraman, V., Boreli, R.: A novel unbalanced tree structure for low-cost authentication of streaming content on mobile and sensor devices. In: 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, pp. 488–496 (2012).  https://doi.org/10.1109/SECON.2012.6275816
  22. 22.
    Lamport, L.: Constructing digital signatures from a one way function. Technical report SRI-CSL-98, SRI International Computer Science Laboratory (1979)Google Scholar
  23. 23.
    Latif, M.K., Jacinto, H.S., Daoud, L., Rafla, N.: Optimization of a quantum-secure sponge-based hash message authentication protocol. In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, Canada, pp. 984–987 (2018).  https://doi.org/10.1109/MWSCAS.2018.8623880
  24. 24.
    Lehnhardt, J., Spalka, A.: Decentralized generation of multiple, uncorrelatable pseudonyms without trusted third parties. In: Furnell, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus 2011. LNCS, vol. 6863, pp. 113–124. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22890-2_10CrossRefGoogle Scholar
  25. 25.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46513-8_14CrossRefGoogle Scholar
  26. 26.
    McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali hash-based signatures. RFC 8554 (2019). https://rfc-editor.org/rfc/rfc8554.txt
  27. 27.
    Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-48184-2_32CrossRefGoogle Scholar
  28. 28.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_21CrossRefGoogle Scholar
  29. 29.
    National Institute of Standards and Technology: The Keyed-Hash Message Authentication Code (HMAC). FIPS PUB 198–1 (2008). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
  30. 30.
    National Institute of Standards and Technology: Secure Hash Standard (SHS). FIPS PUB 80-4 (2015).  https://doi.org/10.6028/NIST.FIPS.180-4
  31. 31.
    National Institute of Standards and Technology: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS PUB 202 (2015).  https://doi.org/10.6028/NIST.FIPS.202
  32. 32.
    Ozcelik, I., Medury, S., Broaddus, J., Skjellum, A.: An overview of cryptographic accumulators. In: 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pp. 661–669 (2021)Google Scholar
  33. 33.
    Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management. TU Dresden, Dresden Germany, Technical report V0.34 (2010)Google Scholar
  34. 34.
    Schartner, P., Schaffer, M.: Unique user-generated digital pseudonyms. In: Gorodetsky, V., Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2005. LNCS, vol. 3685, pp. 194–205. Springer, Heidelberg (2005).  https://doi.org/10.1007/11560326_15CrossRefGoogle Scholar
  35. 35.
    Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_32CrossRefzbMATHGoogle Scholar
  36. 36.
    Tunaru, I., Denis, B, Uguen, B.: Location-based pseudonyms for identity reinforcement in wireless ad hoc networks. In: Proceedings of IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015).  https://doi.org/10.1109/VTCSpring.2015.7145918

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.School of Pure and Applied SciencesOpen University of CyprusLatsiaCyprus
  2. 2.Hellenic Data Protection AuthorityAthensGreece
  3. 3.Department of Informatics and TelecommunicationsUniversity of PeloponneseTripolisGreece

Personalised recommendations