Skip to main content

Automatic Forest Road Extraction from LiDAR Data of Mountainous Areas

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12708)

Abstract

In this paper, a framework is proposed to extract forest roads from LiDAR (Light Detection and Ranging) data in mountainous areas. For that purpose, an efficient and simple solution based on discrete geometry and mathematical morphology tools is proposed. The framework is composed of two steps: (i) detecting road candidates in DTM (Digital Terrain Model) views using a mathematical morphology filter and a fast blurred segment detector in order to select a set of road seeds; (ii) extracting road sections from the obtained seeds using only the raw LiDAR points to cope with DTM approximations. For the second step, a previous tool for fast extraction of linear structures directly from ground points was adapted to automatically process each seed. It first performs a recognition of the road structure under the seed. In case of success, the structure is tracked and extended as far as possible on each side of the segment before post-processing validation and cleaning. Experiments on real data over a wide mountain area (about 78 km\(^2\)) have been conducted to validate the proposed method.

Keywords

  • LiDAR data
  • Road detection
  • Point cloud processing
  • DTM image analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.openmp.org.

References

  1. Clode, S., Kootsookos, P., Rottensteiner, F.: The automatic extraction of roads from LiDAR data. Int. Archiv. Photogr. Remote Sens. Spatial Inf. Sci. 34(B7) (2004)

    Google Scholar 

  2. David, N., Mallet, C., Pons, T., Chauve, A., Bretar, F.: Pathway detection and geometrical description from ALS data in forested montaneous areas. Int. Archiv. Photogr. Remote Sens. Spatial Inf. Sci. 38(part 3/W8), 242–247 (2009)

    Google Scholar 

  3. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006). https://doi.org/10.1016/j.cag.2005.10.007

    CrossRef  MATH  Google Scholar 

  4. Even, P., Ngo, P.: Live extraction of curvilinear structures from LiDAR raw data. ISPRS Annals Photogr. Remote Sens. Spatial Inf. Sci. 2, 211–219 (XXIV ISPRS Congress 2020). https://doi.org/10.5194/isprs-annals-V-2-2020-211-2020

  5. Even, P., Ngo, P., Kerautret, B.: Thick line segment detection with fast directional tracking. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 159–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_15

    CrossRef  Google Scholar 

  6. Ferraz, A., Mallet, C., Chehata, N.: Large-scale road detection in forested mountainous areas using airborne topographic Lidar data. ISPSR J. Photogr. Remote Sens. 112, 23–36 (2016). https://doi.org/10.1016/j.isprsjprs.2015.12.002

    CrossRef  Google Scholar 

  7. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  8. Liu, Q., Kampffmeyer, M., Jenssen, R., Salberg, A.B.: Road mapping in LiDAR images using a joint-task dense dilated convolutions merging network. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), pp. 5041–5044. Yokohama, Japan, 28 July – 2 August 2019. https://doi.org/10.1109/IGARSS.2019.8900082

  9. Merveille, O., Naegel, B., Talbot, H., Najman, L., Passat, N.: 2D filtering of curvilinear structures by ranking the orientation responses of path operators (RORPO). Image Processing On Line 7, 246–261 (2017). https://doi.org/10.5201/ipol.2017.207

    CrossRef  MathSciNet  Google Scholar 

  10. Salberg, A.-B., Trier, Ø.D., Kampffmeyer, M.: Large-scale mapping of small roads in Lidar images using deep convolutional neural networks. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10270, pp. 193–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59129-2_17

    CrossRef  Google Scholar 

  11. White, R.A., Dietterick, B.C., Mastin, T., Strohman, R.: Forest roads mapped using LiDAR in steep forested terrain. Remote Sens. 2(4), 1120–1141 (2010). https://doi.org/10.3390/rs2041120

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was realized in the scope of SolHoM interdisciplinary project of Université de Lorraine. LiDAR data were acquired in the scope of PCR AGER project (Projet collectif de recherche – Archéologie et GEoarchéologie du premier Remiremont et de ses abords), and left available to SolHoM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Even .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Even, P., Ngo, P. (2021). Automatic Forest Road Extraction from LiDAR Data of Mountainous Areas. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)