Skip to main content

An Isometry Classification of Periodic Point Sets

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12708))

Abstract

We develop discrete geometry methods to resolve the data ambiguity challenge for periodic point sets to accelerate materials discovery. In any high-dimensional Euclidean space, a periodic point set is obtained from a finite set (motif) of points in a parallelepiped (unit cell) by periodic translations of the motif along basis vectors of the cell.

An important equivalence of periodic sets is a rigid motion or an isometry that preserves interpoint distances. This equivalence is motivated by solid crystals whose periodic structures are determined in a rigid form.

Crystals are still compared by descriptors that are either not isometry invariants or depend on manually chosen tolerances or cut-off parameters. All discrete invariants including symmetry groups can easily break down under atomic vibrations, which are always present in real crystals.

We introduce a complete isometry invariant for all periodic sets of points, which can additionally carry labels such as chemical elements. The main classification theorem says that any two periodic sets are isometric if and only if their proposed complete invariants (called isosets) are equal.

A potential equality between isosets can be checked by an algorithm, whose computational complexity is polynomial in the number of motif points. The key advantage of isosets is continuity under perturbations, which allows us to quantify similarities between any periodic point sets.

Supported by the EPSRC grant Application-driven Topological Data Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and symmetries of geometric objects. Discret. Comput. Geom. 3, 237–256 (1988)

    Article  MathSciNet  Google Scholar 

  2. Andrews, L., Bernstein, H., Pelletier, G.: A perturbation stable cell comparison technique. Acta Crystallogr. A 36(2), 248–252 (1980)

    Article  Google Scholar 

  3. Anosova, O., Kurlin, V.: Introduction to periodic geometry and topology. arXiv:2103.02749 (2021)

  4. Bright, M., Anosova, O., Kurlin, V.: A proof of the invariant-based formula for the linking number and its asymptotic behaviour. In: Proceedings of NumGrid (2020)

    Google Scholar 

  5. Bouniaev, M., Dolbilin, N.: Regular and multi-regular t-bonded systems. J. Inf. Process. 25, 735–740 (2017)

    MATH  Google Scholar 

  6. Bright, M., Kurlin, V.: Encoding and topological computation on textile structures. Comput. Graph. 90, 51–61 (2020)

    Article  Google Scholar 

  7. Dolbilin, N., Bouniaev, M.: Regular t-bonded systems in R\(^3\). Eur. J. Comb. 80, 89–101 (2019)

    Article  MathSciNet  Google Scholar 

  8. Dolbilin, N., Lagarias, J., Senechal, M.: Multiregular point systems. Discret. Comput. Geom. 20(4), 477–498 (1998)

    Article  MathSciNet  Google Scholar 

  9. Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density fingerprint of a periodic point set. In: Proceedings of SoCG (2021)

    Google Scholar 

  10. Grünbaum, F., Moore, C.: The use of higher-order invariants in the determination of generalized Patterson cyclotomic sets. Acta Crystallogr. A 51, 310–323 (1995)

    Article  MathSciNet  Google Scholar 

  11. Hahn, T., Shmueli, U., Arthur, J.: Intern. Tables crystallogr. 1, 750 (1983)

    Google Scholar 

  12. Hargreaves, C.J., Dyer, M.S., Gaultois, M.W., Kurlin, V.A., Rosseinsky, M.J.: The earth mover’s distance as a metric for the space of inorganic compositions. Chem. Mater. 32, 10610–10620 (2020)

    Google Scholar 

  13. Himanen, L., et al.: Dscribe: library of descriptors for machine learning in materials science. Comput. Phys. Commun. 247, 106949 (2020)

    Article  Google Scholar 

  14. Mosca, M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal lattices. Cryst. Res. Technol. 55(5), 1900197 (2020)

    Article  Google Scholar 

  15. Patterson, A.: Ambiguities in the x-ray analysis of crystal structures. Phys. Rev. 65, 195 (1944)

    Article  Google Scholar 

  16. Pozdnyakov, S., Willatt, M., Bartók, A., Ortner, C., Csányi, G., Ceriotti, M.: Incompleteness of atomic structure representations. Phys. Rev. Lett. 125, 166001 (2020). http://arxiv.org/abs/2001.11696

  17. Pulido, A., et al.: Functional materials discovery using energy-structure-function maps. Nature 543, 657–664 (2017)

    Article  Google Scholar 

  18. Widdowson, D., Mosca, M., Pulido, A., Kurlin, V., Cooper, A.: Average minimum distances of periodic point sets. arXiv:2009.02488 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Kurlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anosova, O., Kurlin, V. (2021). An Isometry Classification of Periodic Point Sets. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics