Skip to main content

Locally Turn-Bounded Curves Are Quasi-Regular

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12708))

Abstract

The characteristics of a digitization of a Euclidean planar shape depends on the digitization process but also on the shape border regularity. The notion of Local Turn Boundedness (LTB) was introduced by the authors in Le Quentrec, É. et al.: Local Turn-Boundedness: A curvature control for a good digitization, DGCI 2019 so as to have multigrid convergent perimeter estimation on Euclidean shapes. If it was proved that the par-regular curves are locally turn bounded, the relation with the quasi-regularity introduced in Ngo, P.et al.: Convexity-Preserving Rigid Motions of 2D Digital Objects, DGCI 2017 had not yet been explored. Our paper is dedicated to prove that for planar shapes, local turn-boundedness implies quasi-regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, the equivalence does not perfectly hold as seen taking \(S=\bar{B}(0,r)\).

References

  1. Alexandrov, A.D., Reshetnyak, Y.G.: General Theory of Irregular Curves, Mathematics and Its Applications, vol. 29. Springer, Dordrecht (1989). https://doi.org/10.1007/978-94-009-2591-5

  2. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. Discr. Comput. Geom. 41(3), 461–479 (2009). https://doi.org/10.1007/s00454-009-9144-8

  3. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959). http://www.jstor.org/stable/1993504

  4. Lachaud, J., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. J. Math Imaging Vis. 54(2), 162–180 (2016). https://doi.org/10.1007/s10851-015-0595-7

  5. Latecki, L., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vision 8, 131–159 (1998). https://doi.org/10.1023/A:1008273227913

  6. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Local Turn-Boundedness: A curvature control for a good digitization. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer Imagery, pp. 51–61. Springer, Cham (2019). https://rd.springer.com/chapter/10.1007/978-3-030-14085-4_5

  7. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Local Turn-Boundedness: A Curvature Control for Continuous Curves with Application to Digitization. J. Math. Imaging Vis. 62(5), 673–692 (2020). https://doi.org/10.1007/s10851-020-00952-x

  8. Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M.: Monotonic sampling of a continuous closed curve from its Gauss digitization. Application to length estimation. Technical report, Icube Laboratory, University of Strasbourg, CNRS (2020). https://hal.archives-ouvertes.fr/hal-02987858, submitted

  9. Meine, H., Köthe, U., Stelldinger, P.: A topological sampling theorem for robust boundary reconstruction and image segmentation. Discrete Appl. Math. 157(3), 524–541 (2009). https://doi.org/10.1016/j.dam.2008.05.031, http://www.sciencedirect.com/science/article/pii/S0166218X08002643

  10. Ngo, P., Kenmochi, Y., Debled-Rennesson, I., Passat, N.: Convexity-preserving rigid motions of 2D digital objects. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 69–81. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_7

    Chapter  Google Scholar 

  11. Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Geometric Preservation of 2D Digital Objects Under Rigid Motions. J. Math. Imaging Vis. 61(2), 204–223 (2019). https://doi.org/10.1007/s10851-018-0842-9, http://link.springer.com/10.1007/s10851-018-0842-9

  12. Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer, Heidelberg (1982)

    Google Scholar 

  13. Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image Vis. Comput. 26(10), 1338–1346 (2008). https://doi.org/10.1016/j.imavis.2007.07.013, http://www.sciencedirect.com/science/article/pii/S0262885607001370

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Étienne Le Quentrec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Quentrec, É., Mazo, L., Baudrier, É., Tajine, M. (2021). Locally Turn-Bounded Curves Are Quasi-Regular. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics