Abstract
Topology preservation is a property of rigid motions in \({\mathbb R^2}\), but not in \({\mathbb {Z}}^2\). In this article, given a binary object \({\mathsf {X}} \subset {\mathbb {Z}}^2\) and a rational rigid motion \({\mathcal R}\), we propose a method for building a binary object \(\mathsf X_{\mathcal R}\subset \mathbb Z^2\) resulting from the application of \({\mathcal R}\) on a binary object \(\mathsf X\). Our purpose is to preserve the homotopy type between \(\mathsf X\) and \(\mathsf X_{\mathcal R}\). To this end, we formulate the construction of \(\mathsf X_{\mathcal R}\) from \(\mathsf X\) as an optimization problem in the space of cellular complexes with the notion of collapse on complexes. More precisely, we define a cellular space \(\mathbb H\) by superimposition of two cubical spaces \(\mathbb F\) and \(\mathbb G\) corresponding to the canonical Cartesian grid of \(\mathbb Z^2\) where \(\mathsf X\) is defined, and the Cartesian grid induced by the rigid motion \({\mathcal R}\), respectively. The object \(\mathsf X_{\mathcal R}\) is then computed by building a homotopic transformation within the space \(\mathbb H\), starting from the cubical complex in \(\mathbb G\) resulting from the rigid motion of \(\mathsf X\) with respect to \({\mathcal R}\) and ending at a complex fitting \(\mathsf X_{\mathcal R}\) in \(\mathbb F\) that can be embedded back into \(\mathbb Z^2\).
Keywords
- Rigid motions
- Cartesian grid
- Homotopy type
- Binary images
- Cubical complexes
- Cellular complexes
This work was supported by the French Agence Nationale de la Recherche (Grants ANR-15-CE23-0009 and ANR-18-CE23-0025).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Andres, É.: The quasi-shear rotation. In: DGCI, pp. 307–314 (1996)
Andres, É., Dutt, M., Biswas, A., Largeteau-Skapin, G., Zrour, R.: Digital two-dimensional bijective reflection and associated rotation. In: DGCI, pp. 3–14 (2019)
Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Monthly 95, 540–541 (1988)
Baudrier, É., Mazo, L.: Combinatorics of the Gauss digitization under translation in 2D. J. Math. Imaging Vision 61, 224–236 (2019)
Berthé, V., Nouvel, B.: Discrete rotations and symbolic dynamics. Theoret. Comput. Sci. 380, 276–285 (2007)
Bloch, I., Pescatore, J., Garnero, L.: A new characterization of simple elements in a tetrahedral mesh. Graphical Models 67, 260–284 (2005)
Blot, V., Coeurjolly, D.: Quasi-affine transformation in higher dimension. In: DGCI, pp. 493–504 (2009)
Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D, and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31, 637–648 (2009)
Jacob, M.A., Andres, É.: On discrete rotations. In: DGCI, pp. 161–174 (1995)
Jacob-Da Col, M., Mazo, L.: nD quasi-affine transformations. In: DGCI, pp. 337–348 (2016)
Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput Vision Graphics Image Process. 46, 141–161 (1989)
Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital images. Acta Applicandae Mathematicae 113, 167–193 (2011)
Mazo, L.: Multi-scale arithmetization of linear transformations. J. Math. Imag. Vision 61, 432–442 (2019)
Mazo, L., Baudrier, É.: Object digitization up to a translation. J. Comput. Syst. Sci. 95, 193–203 (2018)
Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vision 44, 19–37 (2012)
Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vision 49, 418–433 (2014)
Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Convexity invariance of voxel objects under rigid motions. In: ICPR, pp. 1157–1162 (2018)
Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23, 885–897 (2014)
Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: IWCIA, pp. 248–259 (2004)
Nouvel, B., Rémila, E.: Incremental and transitive discrete rotations. In: IWCIA, pp. 199–213 (2006)
Passat, N., Kenmochi, Y., Ngo, P., Pluta, K.: Rigid motions in the cubic grid: a discussion on topological issues. In: DGCI, pp. 127–140 (2019)
Pluta, K., Moroz, G., Kenmochi, Y., Romon, P.: Quadric arrangement in classifying rigid motions of a 3D digital image. In: CASC, pp. 426–443 (2016)
Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D digitized rotations. In: CTIC, pp. 30–41 (2016)
Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective digitized rigid motions on subsets of the plane. J. Math. Imaging Vision 59, 84–105 (2017)
Roussillon, T., Coeurjolly, D.: Characterization of bijective discretized rotations by Gaussian integers. Technical report (2016). https://hal.archives-ouvertes.fr/hal-01259826
Thibault, Y., Sugimoto, A., Kenmochi, Y.: 3D discrete rotations using hinge angles. Theoret. Comput. Sci. 412, 1378–1391 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Passat, N., Ngo, P., Kenmochi, Y. (2021). Homotopic Digital Rigid Motion: An Optimization Approach on Cellular Complexes. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-76657-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76656-6
Online ISBN: 978-3-030-76657-3
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.iapr.org/
