Skip to main content

Homotopic Digital Rigid Motion: An Optimization Approach on Cellular Complexes

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12708)

Abstract

Topology preservation is a property of rigid motions in \({\mathbb R^2}\), but not in \({\mathbb {Z}}^2\). In this article, given a binary object \({\mathsf {X}} \subset {\mathbb {Z}}^2\) and a rational rigid motion \({\mathcal R}\), we propose a method for building a binary object \(\mathsf X_{\mathcal R}\subset \mathbb Z^2\) resulting from the application of \({\mathcal R}\) on a binary object \(\mathsf X\). Our purpose is to preserve the homotopy type between \(\mathsf X\) and \(\mathsf X_{\mathcal R}\). To this end, we formulate the construction of \(\mathsf X_{\mathcal R}\) from \(\mathsf X\) as an optimization problem in the space of cellular complexes with the notion of collapse on complexes. More precisely, we define a cellular space \(\mathbb H\) by superimposition of two cubical spaces \(\mathbb F\) and \(\mathbb G\) corresponding to the canonical Cartesian grid of \(\mathbb Z^2\) where \(\mathsf X\) is defined, and the Cartesian grid induced by the rigid motion \({\mathcal R}\), respectively. The object \(\mathsf X_{\mathcal R}\) is then computed by building a homotopic transformation within the space \(\mathbb H\), starting from the cubical complex in \(\mathbb G\) resulting from the rigid motion of \(\mathsf X\) with respect to \({\mathcal R}\) and ending at a complex fitting \(\mathsf X_{\mathcal R}\) in \(\mathbb F\) that can be embedded back into \(\mathbb Z^2\).

Keywords

  • Rigid motions
  • Cartesian grid
  • Homotopy type
  • Binary images
  • Cubical complexes
  • Cellular complexes

This work was supported by the French Agence Nationale de la Recherche (Grants ANR-15-CE23-0009 and ANR-18-CE23-0025).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andres, É.: The quasi-shear rotation. In: DGCI, pp. 307–314 (1996)

    Google Scholar 

  2. Andres, É., Dutt, M., Biswas, A., Largeteau-Skapin, G., Zrour, R.: Digital two-dimensional bijective reflection and associated rotation. In: DGCI, pp. 3–14 (2019)

    Google Scholar 

  3. Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Monthly 95, 540–541 (1988)

    CrossRef  MathSciNet  Google Scholar 

  4. Baudrier, É., Mazo, L.: Combinatorics of the Gauss digitization under translation in 2D. J. Math. Imaging Vision 61, 224–236 (2019)

    CrossRef  MathSciNet  Google Scholar 

  5. Berthé, V., Nouvel, B.: Discrete rotations and symbolic dynamics. Theoret. Comput. Sci. 380, 276–285 (2007)

    CrossRef  MathSciNet  Google Scholar 

  6. Bloch, I., Pescatore, J., Garnero, L.: A new characterization of simple elements in a tetrahedral mesh. Graphical Models 67, 260–284 (2005)

    CrossRef  Google Scholar 

  7. Blot, V., Coeurjolly, D.: Quasi-affine transformation in higher dimension. In: DGCI, pp. 493–504 (2009)

    Google Scholar 

  8. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D, and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31, 637–648 (2009)

    CrossRef  Google Scholar 

  9. Jacob, M.A., Andres, É.: On discrete rotations. In: DGCI, pp. 161–174 (1995)

    Google Scholar 

  10. Jacob-Da Col, M., Mazo, L.: nD quasi-affine transformations. In: DGCI, pp. 337–348 (2016)

    Google Scholar 

  11. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput Vision Graphics Image Process. 46, 141–161 (1989)

    CrossRef  Google Scholar 

  12. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital images. Acta Applicandae Mathematicae 113, 167–193 (2011)

    CrossRef  MathSciNet  Google Scholar 

  13. Mazo, L.: Multi-scale arithmetization of linear transformations. J. Math. Imag. Vision 61, 432–442 (2019)

    CrossRef  MathSciNet  Google Scholar 

  14. Mazo, L., Baudrier, É.: Object digitization up to a translation. J. Comput. Syst. Sci. 95, 193–203 (2018)

    CrossRef  MathSciNet  Google Scholar 

  15. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vision 44, 19–37 (2012)

    CrossRef  MathSciNet  Google Scholar 

  16. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vision 49, 418–433 (2014)

    CrossRef  MathSciNet  Google Scholar 

  17. Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Convexity invariance of voxel objects under rigid motions. In: ICPR, pp. 1157–1162 (2018)

    Google Scholar 

  18. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23, 885–897 (2014)

    CrossRef  MathSciNet  Google Scholar 

  19. Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: IWCIA, pp. 248–259 (2004)

    Google Scholar 

  20. Nouvel, B., Rémila, E.: Incremental and transitive discrete rotations. In: IWCIA, pp. 199–213 (2006)

    Google Scholar 

  21. Passat, N., Kenmochi, Y., Ngo, P., Pluta, K.: Rigid motions in the cubic grid: a discussion on topological issues. In: DGCI, pp. 127–140 (2019)

    Google Scholar 

  22. Pluta, K., Moroz, G., Kenmochi, Y., Romon, P.: Quadric arrangement in classifying rigid motions of a 3D digital image. In: CASC, pp. 426–443 (2016)

    Google Scholar 

  23. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D digitized rotations. In: CTIC, pp. 30–41 (2016)

    Google Scholar 

  24. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective digitized rigid motions on subsets of the plane. J. Math. Imaging Vision 59, 84–105 (2017)

    CrossRef  MathSciNet  Google Scholar 

  25. Roussillon, T., Coeurjolly, D.: Characterization of bijective discretized rotations by Gaussian integers. Technical report (2016). https://hal.archives-ouvertes.fr/hal-01259826

  26. Thibault, Y., Sugimoto, A., Kenmochi, Y.: 3D discrete rotations using hinge angles. Theoret. Comput. Sci. 412, 1378–1391 (2011)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Passat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Passat, N., Ngo, P., Kenmochi, Y. (2021). Homotopic Digital Rigid Motion: An Optimization Approach on Cellular Complexes. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2021. Lecture Notes in Computer Science(), vol 12708. Springer, Cham. https://doi.org/10.1007/978-3-030-76657-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76657-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76656-6

  • Online ISBN: 978-3-030-76657-3

  • eBook Packages: Computer ScienceComputer Science (R0)