Skip to main content

A Semantic Tableau Method for Argument Construction

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (BNAIC/Benelearn 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1398))

Included in the following conference series:

Abstract

A semantic tableau method, called an argumentation tableau, that enables the derivation of arguments, is proposed. First, the derivation of arguments for standard propositional and predicate logic is addressed. Next, an extension that enables reasoning with defeasible rules is presented. Finally, reasoning by cases using an argumentation tableau is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Arguments for inconsistencies cover rebutting attacks.

  2. 2.

    Note the difference between an undercutting argument and an undercutting defeater. The former is an argument for not using a proposition or a defeasible rule, and the latter is a defeasible rule specifying a condition under which another defeasible rule should not be used [16].

  3. 3.

    Note that the goal is not to define a tableau rule for an ‘exclusive or’ but for a standard ‘or’, which can be viewed as describing three mutually exclusive cases.

References

  1. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 5–40 (2001). https://doi.org/10.1023/A:1013882326814

  2. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168, 162–210 (2005)

    Article  MathSciNet  Google Scholar 

  3. Beirlaen, M., Heyninck, J., Straßer, C.: Reasoning by cases in structured argumentation. In: Proceedings of the Symposium on Applied Computing, pp. 989–994. SAC 2017 (2017)

    Google Scholar 

  4. Besnard, P., Hunter, A.: Practical first-order argumentation. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI), pp. 590–595 (2005)

    Google Scholar 

  5. Besnard, P., Hunter, A.: Argumentation based on classical logic. In: Simari, G., Rahwan, I. (eds) Argumentation in Artificial Intelligence, pp. 133–152. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_7

  6. Beth, E.W.: Formal methods: an introduction to symbolic logic and to the study of effective operations in arithmetic and logic. Synthese library. D. Reidel Publ. Comp

    Google Scholar 

  7. Bodanza, G.: Disjunctions and specificity in suppositional defeasible argumentation. Logic J. IGPL 10(1), 23–49 (2002)

    Article  MathSciNet  Google Scholar 

  8. Caminada, M.: Semi-stable semantics. In: Proceedings of the 1st Conference on Computational Models of Argument (COMMA 2006), Frontiers in Artificial Intelligence and Applications, vol. 144. IOS Press (2006)

    Google Scholar 

  9. Cramer, M., vab der Torre, L.: SCF2 - an argumentation semantics for rational human judgments on argument acceptability. In: Proceedings of the 8th Workshop on Dynamics of Knowledge and Belief (DKB-2019) and the 7th Workshop KI & Kognition (KIK 2019), pp. 24–35 (2019)

    Google Scholar 

  10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  11. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_10

  12. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171, 642–674 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dvořák, W., Gaggl, S.A.: Stage semantics and the SCC-recursive schema for argumentation semantics. J. Logic Comput. 26(4), 1149–1202 (2016). https://doi.org/10.1093/logcom/exu006

    Article  MathSciNet  MATH  Google Scholar 

  14. Massacci, F.: Single step tableaux for modal logics: computational properties, complexity and methodology. J. Autom. Reason. 24, 319–364 (2000)

    Article  MathSciNet  Google Scholar 

  15. Modgil, S., Prakken, H.: The ASPIC\(^+\) framework for structured argumentation: a tutorial. Argument Comput. 5, 31–62 (2014)

    Article  Google Scholar 

  16. Pollock, J.L.: Defeasible reasoning. Cogn. Sci. 11, 481–518 (1987)

    Article  Google Scholar 

  17. Pollock, J.L.: A theory of defeasible reasoning. Int. J. Intell. Syst. 6, 33–54 (1991)

    Article  Google Scholar 

  18. Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57, 1–42 (1992)

    Article  MathSciNet  Google Scholar 

  19. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In: The Handbook of Philosophical Logic, pp. 219–318. Springer, Netherlands (2002)

    Google Scholar 

  20. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1(2), 93–124 (2010)

    Article  Google Scholar 

  21. Roos, N.: A preference logic for non-monotonic reasoning. Technical Report 88–94, Delft University of Technology, Faculty of Technical Mathematics and Informatics (1988)

    Google Scholar 

  22. Roos, N.: Preference logic: a logic for reasoning with inconsistent knowledge. Technical Report 89–53, Delft University of Technology, Faculty of Technical Mathematics and Informatics (1989)

    Google Scholar 

  23. Roos, N.: A logic for reasoning with inconsistent knowledge. Artif. Intell 57, 69–103 (1992)

    Article  MathSciNet  Google Scholar 

  24. Roos, N.: On resolving conflicts between arguments. Technical report, TR-CTIT-97-37 Centre for Telematics and Information Technology, University of Twente, Enschede (1997)

    Google Scholar 

  25. Roos, N.: On resolving conflicts between arguments. Comput. Intell. 16, 469–497 (2000)

    Article  MathSciNet  Google Scholar 

  26. Roos, N.: Preferential model and argumentation semantics. In: Proceedings of the 13th International Workshop on Non-Monotonic Reasoning (NMR 2010) (2010)

    Google Scholar 

  27. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53, 125–157 (1992)

    Article  MathSciNet  Google Scholar 

  28. Toni, F.: A tutorial on assumption-based argumentation. Argument Comput. 5(1), 89–117 (2014)

    Article  Google Scholar 

  29. Toulmin, S.: The uses of argument. Cambridge University Press (1958)

    Google Scholar 

  30. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: In Proceedings of the Biannual International Conference on Formal and Applied Practical Reasoning (FAPR) Workshop, pp. 357–368 (1996)

    Google Scholar 

  31. Vreeswijk, G.: Abstract argumentation systems. Artif. Intell 90, 225–279 (1997)

    Article  MathSciNet  Google Scholar 

  32. Yun, B., Oren, N., Croitoru, M.: Efficient construction of structured argumentation systems. In: Prakken, H., Bistarelli, S., Santini, F., Taticchi, C. (eds.) COMMA. Frontiers in Artificial Intelligence and Applications, vol. 326, pp. 411–418. IOS Press (2020). https://doi.org/10.3233/FAIA200525

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roos, N. (2021). A Semantic Tableau Method for Argument Construction. In: Baratchi, M., Cao, L., Kosters, W.A., Lijffijt, J., van Rijn, J.N., Takes, F.W. (eds) Artificial Intelligence and Machine Learning. BNAIC/Benelearn 2020. Communications in Computer and Information Science, vol 1398. Springer, Cham. https://doi.org/10.1007/978-3-030-76640-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76640-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76639-9

  • Online ISBN: 978-3-030-76640-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics