Skip to main content

Land Use Change in Tropical Watersheds: Will It Support Natural Resources Sustainability?

  • Chapter
  • First Online:
Sustainability in Natural Resources Management and Land Planning

Part of the book series: World Sustainability Series ((WSUSE))

  • 737 Accesses

Abstract

Overexploitation of natural resources for national development has resulted in rapid land-use changes in Indonesia. The incompatibility of land-use changes in tropical watersheds on its designation can result in the degradation of natural resources, threaten land sustainability, increase greenhouse gas emissions, and impact global climate change. The amount, duration, and intensity of extreme rainfall impact the increasing number of hydrological disasters such as floods and landslides. This situation can be exacerbated by changes in land use that are incompatible with their sustainable watershed management function. This paper discusses the importance of sustainability in watershed management to ensure natural resource allocation for future generations. Integrated watershed management is required in natural resource management by integrating biophysical and socio-economic aspects to produce good water quality environmental services. This concept will harmonize the benefits of economic, environmental, and socio-cultural values to support natural resources management and live in a dignified and sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adi RN (2012) Analisis neraca air kawasan hutan tanaman kayu putih di Kabupaten Gunung Kidul Daerah Istimewa Yogyakarta. Gadjah Mada University, Yogyakarta

    Google Scholar 

  • Agus C, Karyanto O, Kita S, Haibara K, Toda H, Hardiwinoto S, Supriyo H, Na’iem M, Wardana W, Sipayung M, Khomsatun S, Wijoyo S (2004) Sustainable site productivity and nutrient management in a short rotation plantation of Gmelina arborea in East Kalimantan, Indonesia. New Forest 28(2):277–285. https://doi.org/10.1023/B:NEFO.0000040954.27630.2f

    Article  Google Scholar 

  • Agus C, Ilfana ZR, Azmi FF, Rachmanadi D, Widiyatno WD, Santosa PB, Harun MK, Yuwati TW, Lestari T (2020) The effect of tropical peat land-use changes on plant diversity and soil properties. Int J Environ Sci Technol 17(3):1703–1712. https://doi.org/10.1007/s13762-019-02579-x

    Article  CAS  Google Scholar 

  • Allen JC, Barnes DF (1985) The causes of deforestation in developing countries. Ann Assoc Am Geog. 75(2):163–184. https://doi.org/10.1111/j.1467-8306.1985.tb00079.x

    Article  Google Scholar 

  • Alvarado A (2016) Plant nutrition in tropical forestry In: Pancel L, Kohl M (eds) Tropical forestry handbook, 2nd edn, vol 2. Springer Reference, Germany, pp 1113–1202

    Google Scholar 

  • Amri M, Yulianti G, Yunus R, Wiguna S, Adi A, Ichwana A, Randongkir R, Septian R (2016) Risiko bencana indonesia. Badan Nasional Penanggulangan Bencana, Jakarta

    Google Scholar 

  • Anderson JM, Spencer T (1991) Carbon, nutrient and water balances of tropical rain forest ecosystems subject to disturbance: Unesco

    Google Scholar 

  • Angelsen A, Kaimowitz D (1999) Rethinking the causes of deforestation: lessons from economic models. World Bank Res Obs 14:73–98

    Google Scholar 

  • Anggana AF, Susanti PD (2020) Evaluation of water quality in the swamp river border using water quality index. J Degraded Min Lands Manage 7(4):2373

    Article  Google Scholar 

  • Anwar S (2005) Watershed management in Indonesia. In: Achouri M, Tennyson L, Upadhyay K, White R (eds) Preparing for the next generation of watershed management programmes and projects, Kathmandu, Nepal. ICIMOD & FAO, pp 93

    Google Scholar 

  • Anwar M, Pawitan H, Murtilaksono K, Jaya INS (2011) Respons Hidrologi Akibat Deforestasi di DAS Barito Hulu. Kalimantan Tengah. Jurnal Manajemen Hutan Tropika 17(3):119–126

    Google Scholar 

  • Asdak C (2002) Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta

    Google Scholar 

  • Atmojo SW (2008) Peran agroforestri dalam menanggulangi banjir dan longsor DAS. In: Proseding Seminar Nasional Pendidikan Agroforestry Sebagai Strategi Menghadapi Pemanasan Global di Fakultas Pertanian, UNS. Solo, 2008, vol 4, pp 1–15

    Google Scholar 

  • Bi W, Weng B, Yuan Z, Ye M, Zhang C, Zhao Y, Yan D, Xu T (2018) Evolution characteristics of surface water quality due to climate change and LUCC under scenario simulations: a case study in the Luanhe River basin. Int J Environ Res Public Health 15(8):1724

    Article  Google Scholar 

  • Bormann FH, Likens GE (1967) Nutrient cycling. Science 155(3761):424. https://doi.org/10.1126/science.155.3761.424

    Article  CAS  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13(11):2379–2395. https://doi.org/10.1111/j.1365-2486.2007.01446.x

    Article  Google Scholar 

  • Braimoh AK, Osaki M (2009) Land-use change and environmental sustainability. Sustain Sci 5(1):5. https://doi.org/10.1007/s11625-009-0092-2

    Article  Google Scholar 

  • Brath A, Montanari A, Moretti G (2006) Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). J Hydrol 324(1):141–153. https://doi.org/10.1016/j.jhydrol.2005.10.001

    Article  Google Scholar 

  • Changnon SA, Demissie M (1996) Detection of changes in streamflow and floods resulting from climate fluctuations and land use-drainage changes. Clim Change 32(4):411–421. https://doi.org/10.1007/BF00140354

    Article  Google Scholar 

  • Chen J, Liu Y-S, Deng W-J, Ying G-G (2019) Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland. Sci Total Environ 660:358–365

    Article  CAS  Google Scholar 

  • Chiti T, Díaz-Pinés E, Butterbach-Bahl K, Marzaioli F, Valentini R (2018) Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in Kenya. Plant Soil 422(1):527–539. https://doi.org/10.1007/s11104-017-3489-1

    Article  CAS  Google Scholar 

  • De Roo A, Odijk M, Schmuck G, Koster E, Lucieer A (2001) Assessing the effects of land use changes on floods in the meuse and oder catchment. Phys Chem Earth Part B 26(7):593–599. https://doi.org/10.1016/S1464-1909(01)00054-5

    Article  Google Scholar 

  • Djaenudin D, Oktaviani R, Hartoyo S, Dwiprabowo H (2018) Analisis peluang keberhasilan penurunan laju deforestasi: pendekatan teori transisi hutan. Jurnal Penelitian Sosial Dan Ekonomi Kehutanan 15(1):15–29

    Article  Google Scholar 

  • Effendi H, Muslimah S, Permatasari PA (2018) Relationship between land use and water quality in Pesanggrahan River. In: IOP conf. series: earth and environmental science, vol 149, pp 012022

    Google Scholar 

  • Farooqui KM, Kumar Sar S, Diwan V (2020) Investigation of water quality in Ambur City by water quality indexing. Holist Approach Environ 10(2):48-52

    Google Scholar 

  • Gao H, Xie Y, Hashim S, Akhtar Khan A, Wang X, Xu H (2018) Application of microbial technology used in bioremediation of urban polluted river: a case study of Chengnan River, China. Water 10(5):643

    Article  Google Scholar 

  • Geng R, Sharpley AN (2019) A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. J Clean Prod 234:1023–1032. https://doi.org/10.1016/j.jclepro.2019.06.277

    Article  CAS  Google Scholar 

  • González de Andrés E (2019) Interactions between climate and nutrient cycles on forest response to global change: the role of mixed forests. Forests 10(8), https://doi.org/10.3390/f10080609

  • Government of Indonesia (2012) Peraturan Pemerintah Republik Indonesia Nomor 37 Tahun 2012 Tentang Pengelolaan Daerah Aliran Sungai. In: Government of Indonesia (ed) Government of Indonesia, Jakarta

    Google Scholar 

  • Government of Indonesia (2015) Intended Nationally Determined Contribution, Republic of Indonesia. Jakarta: Government of Indonesia

    Google Scholar 

  • Guzha AC, Rufino MC, Okoth S, Jacobs S, Nóbrega RLB (2018) Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa. J Hydrol Reg Stud 15:49–67. https://doi.org/10.1016/j.ejrh.2017.11.005

    Article  Google Scholar 

  • Inyinbor Adejumoke A, Adebesin Babatunde O, Oluyori Abimbola P, Adelani Akande Tabitha A, Dada Adewumi O, Oreofe Toyin A (2018) Water pollution: effects, prevention, and climatic impact. Water Challenges Urbanizing World 33

    Google Scholar 

  • Junaidi E, Indrajaya Y (2018) Hydrological responses of agroforestry system application which is not based on land suitability, a case study in Cimuntur watershed. Jurnal Penelitian Kehutanan Wallacea 7(1):69–81

    Article  Google Scholar 

  • Kodoatie RJ, Sjarief R (2008) Pengelolaan Sumber Daya Air Terpadu (Edisi Revisi). Andi, Yogyakarta

    Google Scholar 

  • Kundu S, Khare D, Mondal A (2017) Past, present and future land use changes and their impact on water balance. J Environ Manage 197:582–596. https://doi.org/10.1016/j.jenvman.2017.04.018

    Article  Google Scholar 

  • Kwanchai P, Koontanakulvong M (2009) The effect of land use change on runoff in the nan basin. CATENA 69:31–35

    Google Scholar 

  • Lal R (1987) Managing the soils of sub-Saharan Africa. Science 236(4805):1069. https://doi.org/10.1126/science.236.4805.1069

    Article  CAS  Google Scholar 

  • Lal R (1999) Rationale for watershed as a basis for sustainable management of soil and water resources. Integr Watershed Manage Glob Ecosyst 3–16

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-78341-3

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, SkÃ¥nes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  • Lawrence D, Vandecar K (2015) Effects of tropical deforestation on climate and agriculture. Nat Clim Change 5(1):27–36. https://doi.org/10.1038/nclimate2430

    Article  Google Scholar 

  • Li Z, Liu W-Z, Zhang X-C, Zheng F-L (2009) Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J Hydrol 377(1):35–42. https://doi.org/10.1016/j.jhydrol.2009.08.007

    Article  Google Scholar 

  • Lugo AE, Brown S (1992) Tropical forests as sinks of atmospheric carbon. For Ecol Manage 54(1):239–255. https://doi.org/10.1016/0378-1127(92)90016-3

    Article  Google Scholar 

  • Mawardi I (2010) Kerusakan daerah aliran sungai dan penurunan daya dukung sumberdaya air di pulau jawa serta upaya penanganannya. Jurnal Hidrosfir Indonesia 5(2)

    Google Scholar 

  • Ministry of Environment and Forestry (2018) The State of Indonesia’s Forests 2018. Ministry of Environment and Forestry Republic of Indonesia, Jakarta

    Google Scholar 

  • Ministry of Forestry (2001) Ministry of Forestry Decree Number 52/Kpts-II/2001 about the guidance of watershed management practice. In: Forestry MO (ed) Ministry of Forestry, Jakarta

    Google Scholar 

  • Ministry of Forestry (2009) Ministry of Forestry Decree Number 39/Kpts-II/2009 about the guidance of developing the integrated watershed management plan. In: Ministry of Forestry (ed)

    Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-8433-1

  • Ministry of Public Works and Housing (2010) Keputusan Menteri Pekerjaan Umum No. 266/KPTS/M/2010 tentang Pola Pengelolaan Sumber Daya Air Wilayah Sungai Bengawan Solo, Indonesia. In: M. o. P. W. a. Housing (ed) Jakarta

    Google Scholar 

  • Nugroho SP (2011) Minimalisasi lahan kritis melalui pengelolaan sumberdaya lahan dan konservasi tanah dan air secara terpadu. Jurnal Teknologi Lingkungan 1(1). https://doi.org/10.29122/jtl.v1i1.165

  • Owa F (2013) Water pollution: sources, effects, control and management. Mediterr J Soc Sci 4(8):65

    Google Scholar 

  • Pawitan H (2004) Perubahan penggunaan lahan dan pengaruhnya terhadap hidrologi Daerah Aliran Sungai. Laboratorium Hidrometeorologi FMIPA IPB, Bogor

    Google Scholar 

  • Prasena A, Shrestha DP (2013) Assessing the effects of land use change on runoff in Bedog Sub Watershed Yogyakarta. Indones J Geogr 45(1):48

    Google Scholar 

  • Rafiei Emam A, Mishra BK, Kumar P, Masago Y, Fukushi K (2016) Impact assessment of climate and land-use changes on flooding behavior in the upper Ciliwung River, Jakarta, Indonesia. Water 8(12). https://doi.org/10.3390/w8120559

  • Ratnasari M, Damarraya A, Rhama DFP, Tosiani A (2020) Rekalkulasi Penutupan Lahan Indonesia Tahun 2019. In: Purwanto J, Pramono J, Limbu ES (eds) Ministry of Environment and Forestry, Jakarta

    Google Scholar 

  • Ridwansyah I, Yulianti M, Apip Onodera S-I, Shimizu Y, Wibowo H, Fakhrudin M (2020) The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology 21(3):487–498. https://doi.org/10.1007/s10201-020-00629-9

    Article  Google Scholar 

  • Rukmi NI, Hamidy R, Mubarak M (2013) Pengaruh luas tebangan hutan tanaman akasia terhadap karakteristik hidrograf banjir. Jurnal Ilmu Lingkungan 7(1):68–94

    Google Scholar 

  • Schweitzer L, Noblet J (2018) Chapter 3.6—water contamination and pollution. In: Török B, Dransfield T (eds) Green chemistry. Elsevier, pp 261–290

    Google Scholar 

  • Setyorini A, Khare D, Pingale SM (2017) Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia. Appl Geomatics 9(3):191–204. https://doi.org/10.1007/s12518-017-0193-z

    Article  Google Scholar 

  • Seymour F, Harris NL (2019) Reducing tropical deforestation. Science 365(6455):756. https://doi.org/10.1126/science.aax8546

    Article  CAS  Google Scholar 

  • Sheng TC (1994) Challenges and strategies in integrated watershed management in developing countries. In: 8th international soil conservation conference, New Delhi, India

    Google Scholar 

  • Silva AC, Barbosa MS, Barral UM, Silva BPC, Fernandes JSC, Viana AJS, Filho CVM, Bispo DFA, Christófaro C, Ragonezi C, Guilherme LRG (2019) Organic matter composition and paleoclimatic changes in tropical mountain peatlands currently under grasslands and forest clusters. CATENA 180:69–82. https://doi.org/10.1016/j.catena.2019.04.017

    Article  CAS  Google Scholar 

  • Singh J, Yadav P, Pal AK, Mishra V (2020) Water Pollutants: Origin and Status. In: Pooja D, Kumar P, Singh P, Patil S (eds) Sensors in water pollutants monitoring: role of material. Springer, Singapore, pp 5–20

    Chapter  Google Scholar 

  • Siswamartana S, Utomo WH, Soedjoko SA, Priyono NS, Mulyana NM, Rusdiana O, Pramono IB (2002) Hutan pinus dan hasil air. BPPTPDAS, Surakarta

    Google Scholar 

  • Sudaryono S (2002) Pengelolaan Daerah Aliran Sungai (DAS) Terpadu, Konsep Pembangunan Berkelanjutan. Jurnal Teknologi Lingkungan 3(2). https://doi.org/10.29122/jtl.v3i2.249.

  • Susanti PD, Miardini A (2017) The impact of land use change on water pollution index of Kali Madiun Sub-watershed. In: Forum Geografi, vol 31, pp 128–137, vol 1

    Google Scholar 

  • Susanti PD, Wahyuningrum N (2020) Identification of the main water quality parameters for monitoring and evaluating watershed health. Indones J Geogr 52(2):239–245

    Article  Google Scholar 

  • Sutrisno N, Heryani N (2013) Teknologi konservasi tanah dan air untuk mencegah degradasi lahan pertanian berlereng. Jurnal Penelitian dan Pengembangan Pertanian 32(3):122–130. https://doi.org/10.21082/jp3.v32n3.2013.p122-130

  • Tadjoeddin MZ (2007) A future resource curse in Indonesia: the political economy of natural resources, conflict and development. Oxford University

    Google Scholar 

  • National Statistics Bureau (2019) The critical Land in Indonesia. https://www.bps.go.id/dynamictable/2017/02/08%2000:00:00/1231/luas-dan-penyebaran-lahan-kritis-menurut-provinsi-tahun-2005-2013-ribu-ha-html

  • Toto Same A (2009) Transforming natural resource wealth into sustained growth and poverty reduction: a conceptual framework for Sub-Saharan African oil exporting countries: The World Bank

    Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9(1):9–17. https://doi.org/10.1890/100047

    Article  Google Scholar 

  • Tsujino R, Yumoto T, Kitamura S, Djamaluddin I, Darnaedi D (2016) History of forest loss and degradation in Indonesia. Land Use Policy 57:335–347. https://doi.org/10.1016/j.landusepol.2016.05.034

    Article  Google Scholar 

  • van Noordwijk M, Agus F, Dewi S, Purnomo H (2014) Reducing emissions from land use in Indonesia: motivation, policy instruments and expected funding streams. Mitig Adapt Strat Glob Change 19(6):677–692. https://doi.org/10.1007/s11027-013-9502-y

    Article  Google Scholar 

  • Viman OV, Oroian I, FleÅŸeriu A (2010) Types of water pollution: point source and non-point source. Aquaculture Aquarium Conserv Legislation 3(5):393–397

    Google Scholar 

  • Wahyuningrum N, Putra PB (2019) Degraded land analyses of Brantas River basin to support land rehabilitation. Jurnal Penelitian Kehutanan Wallacea 8(2):135–145. https://doi.org/10.18330/jwallacea.2019.vol8iss2pp135-145

  • Wang X, Chu X, Liu T, Cheng X, Whittecar R (2017) Water–soil–vegetation dynamic interactions in changing climate. Water 9(10). https://doi.org/10.3390/w9100740

  • Xu J, Dong J, Wu L, Shao G, Yang H (2015) Land use/cover change and its impact on net primary productivity in Huangfuchuan watershed temperate grassland, China. In: Bian F, Xie Y (eds) geo-informatics in resource management and sustainable ecosystem. Springer, Berlin, Heidelberg, pp 664–683

    Google Scholar 

  • Zhang M, Wei X (2012) The cumulative effects of forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada. Hydrol Earth Syst Sci Discuss 9(3)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cahyono Agus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Putra, P.B., Agus, C., Adi, R.N., Susanti, P.D., Indrajaya, Y. (2021). Land Use Change in Tropical Watersheds: Will It Support Natural Resources Sustainability?. In: Leal Filho, W., Azeiteiro, U.M., Setti, A.F.F. (eds) Sustainability in Natural Resources Management and Land Planning. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-030-76624-5_5

Download citation

Publish with us

Policies and ethics