Skip to main content

Deep Learning Approaches for IoV Applications and Services

Part of the Internet of Things book series (ITTCC)

Abstract

Internet of vehicles (IoV) has become an important revolution of intelligent transportation system (ITS). It became an emerging research area as the need for it has increased tremendously. With a great number of applications available, in addition to the intention to improve the quality of life and quality of services, the application of artificial intelligence (AI) techniques would dramatically enhance the performance of the IoV overall system. This chapter will discuss deep learning networks as a type of machine learning use in IoV with influence of Neural Networks (NN), where great amounts of unlabeled data are processed, classified and clustered. Deep learning network approaches i.e., Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Deep Reinforcement Learning (DRL), classification, clustering, and predictive analysis (regression) will briefly discussed in this chapter, in addition to review its ability to obtain better performing IoV applications.

Keywords

  • IoT
  • AI
  • IoV
  • Deep learning
  • Neural networks
  • CNN
  • RNN
  • Reinforcement learning
  • Classification
  • Clustering
  • Regression

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shetty, D., Harshavardhan, C.A., Jayanth Varma, M., Navi, S., Ahmed, M.R.: Diving deep into deep learning: history, evolution, types and applications. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9(3), 2835–2846 (2020)

    CrossRef  Google Scholar 

  2. Yao, S., Zhao, Y., Zhang, A., Hu, S., Shao, H., Zhang, C., Su, L., Abdelzaher, T.: Deep learning for the internet of things. Computer 51(5), 32–41 (2018)

    CrossRef  Google Scholar 

  3. Pathan, A.-S.K., Saeed, R.A., Feki, M.A., Tran, N.H.: Integration of IoT with future internet. J. Internet Technol. (JIT) 15(2), 145–147 (2014)

    Google Scholar 

  4. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer. J.S.: A survey on distributed machine learning. arXiv:1912.09789, 20 December 2019

  5. Ibrahim, S., Saeed, R.A., Mukherjee, A.: Resource management in vehicular cloud computing, chap 4. In: Grover, J., Vinod, P., (eds.) Vehicular Cloud Computing for Traffic Management and Systems, pp. 75–97. IGI Global, USA (June 2018)

    Google Scholar 

  6. Amodei, D., et al.: Deep Speech 2: end-to-end speech recognition in English and Mandarin. In: International Conference on Machine Learning, vol. 48. JMLR: W&CP (2016)

    Google Scholar 

  7. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars. arXiv:1604.07316v1, 25 April 2016

  8. Khandani, A.E., Kim, A.J., Andrew, W.L.: Consumer credit-risk models via machine-learning algorithms. J. Bank. Finance 34, 2767–2787 (2010)

    CrossRef  Google Scholar 

  9. Peteiro-Barral, D., Guijarro-Berdiñas, B.: A survey of methods for distributed machine learning. Prog. Artif. Intell. 2(1), 1–11 (2013)

    CrossRef  Google Scholar 

  10. Qiu, J., Qihui, Wu., Ding, G., Yuhua, Xu., Feng, S.: A survey of machine learning for big data processing. EURASIP J. Adv. Sig. Process. 2016(1), 67 (2016)

    CrossRef  Google Scholar 

  11. Abdelgadir, M., Saeed, R.A., Babikir, A.A. Mobility routing model for vehicular ad-hoc networks (VANETs), smart city scenarios. Veh. Commun. 9, 154–161 (2017)

    Google Scholar 

  12. Liu, L., Özsu, M.T.: Encyclopedia of Database Systems. Springer, US (2018)

    Google Scholar 

  13. Li, P.: Optimization algorithms for deep learning. Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

    Google Scholar 

  14. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747v2 [cs.LG], 15 June 2017

  15. Duchi, J., Hazan, E., Singer, Y.: Adaptive sub gradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701v1 [cs.LG], 22 December 2012

  17. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 [cs.LG], 30 January 2017

  18. Hsu, R.C.-H., Wang, S., (eds.): Internet of vehicles – technologies and services. In: 1st International Conference, IOV 2014, Beijing, China, 1–3 September 2014 (2014)

    Google Scholar 

  19. Ahmed, Z.E., Saeed, R.A., Mukherjee, A.: Challenges and opportunities in vehicular cloud computing. In: Jyoti Grover, P., Vinod, C.L. (eds.) Vehicular Cloud Computing for Traffic Management and Systems, pp. 57–74. IGI Global (2018). https://doi.org/10.4018/978-1-5225-3981-0.ch003

  20. Sharma, S., Ghanshala, K.K., Mohan, S.: A security system using deep learning approach for internet of vehicles (IoV). In: 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (2018)

    Google Scholar 

  21. Abdelgadir, M., Saeed, R.A.: Evaluation of performance enhancement of OFDM based on cross layer design (CLD) IEEE 802.11p standard for vehicular ad-hoc networks (VANETs), city scenario. Int. J. Sig. Process. Syst. 8(1), 1–7 (2020)

    CrossRef  Google Scholar 

  22. Chen, C.-H., Lee, C.-R., Walter Chen-Hua, L.: A mobile cloud framework for deep learning and its application to smart car camera. In: Hsu, C.-H., Wang, S., Zhou, A., Shawkat, A. (eds.) Internet of Vehicles – Technologies and Services, pp. 14–25. Springer International Publishing, Cham (2016)

    CrossRef  Google Scholar 

  23. Chen, C., Xiang, H., Qiu, T., Wang, C., Zhou, Y., Chang, V.: A rear-end collision prediction scheme based on deep learning in the Internet of Vehicles. J. Parallel Distrib. Comput. 117, 192–204 (2017)

    CrossRef  Google Scholar 

  24. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv:1511.08458v2 [cs.NE], 2 December 2015

  25. Albawi, S., Mohammed, T.A.: Understanding of a convolutional neural network. In: ICET 2017, Antalya, Turkey (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186.

  26. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Multilayer perceptrons, chap. 3. In: Neural and Adaptive Systems: Fundamentals Through Simulation (1997)

    Google Scholar 

  27. Yoon, S., Kum, D.: The multilayer perceptron approach to lateral motion prediction of surrounding vehicles for autonomous vehicles. In: 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016 (2016)

    Google Scholar 

  28. Ferreira, M.D., Corrêa, D.C., Nonato, L.G., de Mello, R.F.: Designing architectures of convolutional neural networks to solve practical problems. Exp. Syst. Appl. 94, 205–217 (2018)

    CrossRef  Google Scholar 

  29. Amirul Islam, M., Hossan, T., Jang, Y.M.: Convolutional neural network scheme–based optical camera communication system for intelligent Internet of vehicles. Int. J. Distrib. Sens. Netw. 14(4), 155014771877015 (2018)

    CrossRef  Google Scholar 

  30. DiPietro, R., Hager, G.D.: Deep learning: RNNs and LSTM. In: Handbook of Medical Image Computing and Computer Assisted Intervention (2020)

    Google Scholar 

  31. Du, K.-L., Swamy, M.N.: Neural Networks and Statistical Learning. Springer, London (2019)

    Google Scholar 

  32. Virmani, S., Gite, S.: Performance of convolutional neural network and recurrent neural network for anticipation of driver’s conduct. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2017)

    Google Scholar 

  33. Eltahir, A.A., Saeed, R.A.: V2V communication protocols in cloud assisted vehicular networks, chap 06. In: Grover, J., Vinod, P. (eds.) Vehicular Cloud Computing for Traffic Management and Systems, pp. 125–150, June 2018. IGI Global, USA. https://doi.org/10.4018/978-5225-3981-0. ISBN13: 9781522539810, ISBN10: 1522539816

  34. Ning, Z., Dong, P., Wang, X., Guo, L., Rodrigues, J.J.P.C., Kong, X., Huang, J., Kwok, R.Y.K.: Deep reinforcement learning for intelligent internet of vehicles: an energy-efficient computational offloading scheme. IEEE Trans. Cogn. Commun. Netw. 5(4), 1060–1072 (2019)

    CrossRef  Google Scholar 

  35. Atallah, R.F., Assi, C.M., Khabbaz, M.J.: Scheduling the operation of a connected vehicular network using deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 20(5), 1669–1682 (2019)

    CrossRef  Google Scholar 

  36. Atallah, R., Assi, C., Khabbaz, M.: Deep reinforcement learning-based scheduling for roadside communication networks. In: 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2017)

    Google Scholar 

  37. Cheng, M., Li, J., Nazarian. S.: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: 23rd Asia and South Pacific Design Automation Conference (ASP-DAC) (2018)

    Google Scholar 

  38. Yang, H., Xie, X., Kadoch, M.: Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks. IEEE Trans. Veh. Technol. 68(5), 4157–4169 (2019)

    CrossRef  Google Scholar 

  39. Liu, M., Teng, Y., Yu, F.R., Leung, V.C.M., Song, M.: Deep reinforcement learning based performance optimization in blockchain-enabled internet of vehicle. In: 2019 IEEE International Conference on Communications (ICC) (2019)

    Google Scholar 

  40. Chang, W.-J., Chen, L.-B., Su, K.-Y.: DeepCrash: a deep learning-based internet of vehicles system for head-on and single-vehicle accident detection with emergency notification. IEEE ACCESS 7, 148163–148175 (2019)

    CrossRef  Google Scholar 

  41. Al-Hmoudi, M.I., Saeed, R.A., Hasan, A.A., Khalifa, O.O., Mahmoud, O., Sellami, A.: Power control for interference avoidance in femtocell network. Aust. J. Basic Appl. Sci. (AJBAS) 5(6), 416–422 (2011)

    Google Scholar 

  42. Darwish, T.S.J., Bakar, K.A.: Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues. IEEE Access 6, 15679–15701 (2018)

    CrossRef  Google Scholar 

  43. Iqbal, R., Butt, T.A., Omair Shafiq, M., Talib, M.W.A., Umar, T.: Context-aware data-driven intelligent framework for fog infrastructures in internet of vehicles. IEEE Access 6, 58182–58194 (2018)

    CrossRef  Google Scholar 

  44. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: from the perspective of network architecture. IEEE Acess 6, 39501–39514 (2018)

    CrossRef  Google Scholar 

  45. Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algorithms, Pisa, Italy, 11–15 September 2006 (2006)

    Google Scholar 

  46. Kato, N., Fadlullah, Z.M., Mao, B., Tang, F., Akashi, O., Inoue, T., Mizutani. K.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24, 146–153 (2016)

    Google Scholar 

  47. Senan, S., Hashim, A.H.A., Saeed, R.A., Daoud, J.I.: Evaluation of nested network mobility approaches. J. Appl. Sci. 11(12), 2244–3349 (2011)

    CrossRef  Google Scholar 

  48. Dong, Y., Yu, Z, Rose, G.: SR-IOV networking in Xen: architecture, design and implementation, Xen is a trademark of XenSource, Inc. https://www.usenix.org/legacy/events/wiov08/tech/full_papers/dong/dong.pdf

  49. Brownlee, J.: Machine learning algorithms. Logistic regression for machine learning, 12 August 2019. https://machinelearningmastery.com/logistic-regression-for-machine-learning/

  50. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Book: Dive into Deep Learning Release 0.7.1, 02 July 2020. https://d2l.ai/d2l-en.pdf

  51. Lindley, D V., Novick, M.R., Pearl, J., Simpson, E.H.: Linear Hypothesis: Fallacies and Interpreti e Problems (Simpson’s Paradox). In: International Encyclopedia of the Social & Behavioral Sciences. Elsevier Science Ltd. (2001). ISBN 0-08-043076-7

    Google Scholar 

  52. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., Horaud, R.: A comprehensive analysis of deep regression. arXiv:1803.08450v2 [cs.CV], 13 February 2019

  53. Hassan, M.B., Ali, E.S., Mokhtar, R.A., Saeed, R.A., Chaudhari, B.S.: NB-IoT: concepts, applications, and deployment challenges, chap. 6. In: Chaudhari, B.S., Zennaro, M., (eds.) LPWAN Technologies for IoT and M2M Applications. Elsevier, March 2020. ISBN 9780128188804

    Google Scholar 

  54. Ahmed, Z.E., Saeed, R.A., Ghopade, S.N., Mukherjee, A.: Energy optimization in LPWANs by using heuristic techniques, chap. 11. In: Chaudhari, B.S., Zennaro, M., (eds.) LPWAN Technologies for IoT and M2M Applications. Elsevier, March 2020. ISBN 9780128188804

    Google Scholar 

  55. Saeed, R.A., (ed.): WiMAX, LTE, and WiFi interworking. J. Comput. Syst. Netw. Commun. 2010, 2 (2010). Article ID 754187

    Google Scholar 

  56. Raza, S., Wang, S., Ahmed, M., Anwar, M.R.: A survey on vehicular edge computing: architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019 (20119). Article ID 3159762

    Google Scholar 

  57. Hassan, M.B., Ali, E.S., Nurelmadina, N., Saeed, R.A.: Artificial intelligence in IoT and its applications. In: Intelligent Wireless Communications. IET Book Publisher (2020)

    Google Scholar 

  58. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2017)

    CrossRef  Google Scholar 

  59. Eom, J., Kim, H., Lee, S.H., Kim, S.: DNN-assisted cooperative localization in vehicular networks. Energies 12(14), 2758 (2019)

    CrossRef  Google Scholar 

  60. Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., Shen, X.: Deep reinforcement learning for autonomous internet of things: model, applications and challenges. IEEE Commun. Surv. Tut. 22(3), 1722–1760 (2020)

    CrossRef  Google Scholar 

  61. Sagar, R.: Why deep learning is a costly affair. Anal. India Mag. (2020)

    Google Scholar 

  62. Robinds, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    CrossRef  MathSciNet  Google Scholar 

  63. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR 269, 543– 547 (1983). Translated as Soviet. Math. Docl.

    Google Scholar 

  64. Saeed, R.A., Khatun, S., Ali, B.M., Khazani, M.: A juoint PHY/MAC cross-layer design for UWB under power control. Comput. Electr. Eng. (CAEE) 36(3), 455–468 (2010)

    CrossRef  Google Scholar 

  65. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747, January 2016

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alatabani, L.E., Ali, E.S., Saeed, R.A. (2021). Deep Learning Approaches for IoV Applications and Services. In: Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., Markakis, E.K. (eds) Intelligent Technologies for Internet of Vehicles. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-76493-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76493-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76492-0

  • Online ISBN: 978-3-030-76493-7

  • eBook Packages: Computer ScienceComputer Science (R0)