Abstract
Internet of vehicles (IoV) has become an important revolution of intelligent transportation system (ITS). It became an emerging research area as the need for it has increased tremendously. With a great number of applications available, in addition to the intention to improve the quality of life and quality of services, the application of artificial intelligence (AI) techniques would dramatically enhance the performance of the IoV overall system. This chapter will discuss deep learning networks as a type of machine learning use in IoV with influence of Neural Networks (NN), where great amounts of unlabeled data are processed, classified and clustered. Deep learning network approaches i.e., Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Deep Reinforcement Learning (DRL), classification, clustering, and predictive analysis (regression) will briefly discussed in this chapter, in addition to review its ability to obtain better performing IoV applications.
Keywords
- IoT
- AI
- IoV
- Deep learning
- Neural networks
- CNN
- RNN
- Reinforcement learning
- Classification
- Clustering
- Regression
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Shetty, D., Harshavardhan, C.A., Jayanth Varma, M., Navi, S., Ahmed, M.R.: Diving deep into deep learning: history, evolution, types and applications. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9(3), 2835–2846 (2020)
Yao, S., Zhao, Y., Zhang, A., Hu, S., Shao, H., Zhang, C., Su, L., Abdelzaher, T.: Deep learning for the internet of things. Computer 51(5), 32–41 (2018)
Pathan, A.-S.K., Saeed, R.A., Feki, M.A., Tran, N.H.: Integration of IoT with future internet. J. Internet Technol. (JIT) 15(2), 145–147 (2014)
Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer. J.S.: A survey on distributed machine learning. arXiv:1912.09789, 20 December 2019
Ibrahim, S., Saeed, R.A., Mukherjee, A.: Resource management in vehicular cloud computing, chap 4. In: Grover, J., Vinod, P., (eds.) Vehicular Cloud Computing for Traffic Management and Systems, pp. 75–97. IGI Global, USA (June 2018)
Amodei, D., et al.: Deep Speech 2: end-to-end speech recognition in English and Mandarin. In: International Conference on Machine Learning, vol. 48. JMLR: W&CP (2016)
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars. arXiv:1604.07316v1, 25 April 2016
Khandani, A.E., Kim, A.J., Andrew, W.L.: Consumer credit-risk models via machine-learning algorithms. J. Bank. Finance 34, 2767–2787 (2010)
Peteiro-Barral, D., Guijarro-Berdiñas, B.: A survey of methods for distributed machine learning. Prog. Artif. Intell. 2(1), 1–11 (2013)
Qiu, J., Qihui, Wu., Ding, G., Yuhua, Xu., Feng, S.: A survey of machine learning for big data processing. EURASIP J. Adv. Sig. Process. 2016(1), 67 (2016)
Abdelgadir, M., Saeed, R.A., Babikir, A.A. Mobility routing model for vehicular ad-hoc networks (VANETs), smart city scenarios. Veh. Commun. 9, 154–161 (2017)
Liu, L., Özsu, M.T.: Encyclopedia of Database Systems. Springer, US (2018)
Li, P.: Optimization algorithms for deep learning. Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747v2 [cs.LG], 15 June 2017
Duchi, J., Hazan, E., Singer, Y.: Adaptive sub gradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701v1 [cs.LG], 22 December 2012
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 [cs.LG], 30 January 2017
Hsu, R.C.-H., Wang, S., (eds.): Internet of vehicles – technologies and services. In: 1st International Conference, IOV 2014, Beijing, China, 1–3 September 2014 (2014)
Ahmed, Z.E., Saeed, R.A., Mukherjee, A.: Challenges and opportunities in vehicular cloud computing. In: Jyoti Grover, P., Vinod, C.L. (eds.) Vehicular Cloud Computing for Traffic Management and Systems, pp. 57–74. IGI Global (2018). https://doi.org/10.4018/978-1-5225-3981-0.ch003
Sharma, S., Ghanshala, K.K., Mohan, S.: A security system using deep learning approach for internet of vehicles (IoV). In: 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (2018)
Abdelgadir, M., Saeed, R.A.: Evaluation of performance enhancement of OFDM based on cross layer design (CLD) IEEE 802.11p standard for vehicular ad-hoc networks (VANETs), city scenario. Int. J. Sig. Process. Syst. 8(1), 1–7 (2020)
Chen, C.-H., Lee, C.-R., Walter Chen-Hua, L.: A mobile cloud framework for deep learning and its application to smart car camera. In: Hsu, C.-H., Wang, S., Zhou, A., Shawkat, A. (eds.) Internet of Vehicles – Technologies and Services, pp. 14–25. Springer International Publishing, Cham (2016)
Chen, C., Xiang, H., Qiu, T., Wang, C., Zhou, Y., Chang, V.: A rear-end collision prediction scheme based on deep learning in the Internet of Vehicles. J. Parallel Distrib. Comput. 117, 192–204 (2017)
O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv:1511.08458v2 [cs.NE], 2 December 2015
Albawi, S., Mohammed, T.A.: Understanding of a convolutional neural network. In: ICET 2017, Antalya, Turkey (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186.
Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Multilayer perceptrons, chap. 3. In: Neural and Adaptive Systems: Fundamentals Through Simulation (1997)
Yoon, S., Kum, D.: The multilayer perceptron approach to lateral motion prediction of surrounding vehicles for autonomous vehicles. In: 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016 (2016)
Ferreira, M.D., Corrêa, D.C., Nonato, L.G., de Mello, R.F.: Designing architectures of convolutional neural networks to solve practical problems. Exp. Syst. Appl. 94, 205–217 (2018)
Amirul Islam, M., Hossan, T., Jang, Y.M.: Convolutional neural network scheme–based optical camera communication system for intelligent Internet of vehicles. Int. J. Distrib. Sens. Netw. 14(4), 155014771877015 (2018)
DiPietro, R., Hager, G.D.: Deep learning: RNNs and LSTM. In: Handbook of Medical Image Computing and Computer Assisted Intervention (2020)
Du, K.-L., Swamy, M.N.: Neural Networks and Statistical Learning. Springer, London (2019)
Virmani, S., Gite, S.: Performance of convolutional neural network and recurrent neural network for anticipation of driver’s conduct. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2017)
Eltahir, A.A., Saeed, R.A.: V2V communication protocols in cloud assisted vehicular networks, chap 06. In: Grover, J., Vinod, P. (eds.) Vehicular Cloud Computing for Traffic Management and Systems, pp. 125–150, June 2018. IGI Global, USA. https://doi.org/10.4018/978-5225-3981-0. ISBN13: 9781522539810, ISBN10: 1522539816
Ning, Z., Dong, P., Wang, X., Guo, L., Rodrigues, J.J.P.C., Kong, X., Huang, J., Kwok, R.Y.K.: Deep reinforcement learning for intelligent internet of vehicles: an energy-efficient computational offloading scheme. IEEE Trans. Cogn. Commun. Netw. 5(4), 1060–1072 (2019)
Atallah, R.F., Assi, C.M., Khabbaz, M.J.: Scheduling the operation of a connected vehicular network using deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 20(5), 1669–1682 (2019)
Atallah, R., Assi, C., Khabbaz, M.: Deep reinforcement learning-based scheduling for roadside communication networks. In: 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2017)
Cheng, M., Li, J., Nazarian. S.: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: 23rd Asia and South Pacific Design Automation Conference (ASP-DAC) (2018)
Yang, H., Xie, X., Kadoch, M.: Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks. IEEE Trans. Veh. Technol. 68(5), 4157–4169 (2019)
Liu, M., Teng, Y., Yu, F.R., Leung, V.C.M., Song, M.: Deep reinforcement learning based performance optimization in blockchain-enabled internet of vehicle. In: 2019 IEEE International Conference on Communications (ICC) (2019)
Chang, W.-J., Chen, L.-B., Su, K.-Y.: DeepCrash: a deep learning-based internet of vehicles system for head-on and single-vehicle accident detection with emergency notification. IEEE ACCESS 7, 148163–148175 (2019)
Al-Hmoudi, M.I., Saeed, R.A., Hasan, A.A., Khalifa, O.O., Mahmoud, O., Sellami, A.: Power control for interference avoidance in femtocell network. Aust. J. Basic Appl. Sci. (AJBAS) 5(6), 416–422 (2011)
Darwish, T.S.J., Bakar, K.A.: Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues. IEEE Access 6, 15679–15701 (2018)
Iqbal, R., Butt, T.A., Omair Shafiq, M., Talib, M.W.A., Umar, T.: Context-aware data-driven intelligent framework for fog infrastructures in internet of vehicles. IEEE Access 6, 58182–58194 (2018)
Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: from the perspective of network architecture. IEEE Acess 6, 39501–39514 (2018)
Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algorithms, Pisa, Italy, 11–15 September 2006 (2006)
Kato, N., Fadlullah, Z.M., Mao, B., Tang, F., Akashi, O., Inoue, T., Mizutani. K.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24, 146–153 (2016)
Senan, S., Hashim, A.H.A., Saeed, R.A., Daoud, J.I.: Evaluation of nested network mobility approaches. J. Appl. Sci. 11(12), 2244–3349 (2011)
Dong, Y., Yu, Z, Rose, G.: SR-IOV networking in Xen: architecture, design and implementation, Xen is a trademark of XenSource, Inc. https://www.usenix.org/legacy/events/wiov08/tech/full_papers/dong/dong.pdf
Brownlee, J.: Machine learning algorithms. Logistic regression for machine learning, 12 August 2019. https://machinelearningmastery.com/logistic-regression-for-machine-learning/
Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Book: Dive into Deep Learning Release 0.7.1, 02 July 2020. https://d2l.ai/d2l-en.pdf
Lindley, D V., Novick, M.R., Pearl, J., Simpson, E.H.: Linear Hypothesis: Fallacies and Interpreti e Problems (Simpson’s Paradox). In: International Encyclopedia of the Social & Behavioral Sciences. Elsevier Science Ltd. (2001). ISBN 0-08-043076-7
Lathuilière, S., Mesejo, P., Alameda-Pineda, X., Horaud, R.: A comprehensive analysis of deep regression. arXiv:1803.08450v2 [cs.CV], 13 February 2019
Hassan, M.B., Ali, E.S., Mokhtar, R.A., Saeed, R.A., Chaudhari, B.S.: NB-IoT: concepts, applications, and deployment challenges, chap. 6. In: Chaudhari, B.S., Zennaro, M., (eds.) LPWAN Technologies for IoT and M2M Applications. Elsevier, March 2020. ISBN 9780128188804
Ahmed, Z.E., Saeed, R.A., Ghopade, S.N., Mukherjee, A.: Energy optimization in LPWANs by using heuristic techniques, chap. 11. In: Chaudhari, B.S., Zennaro, M., (eds.) LPWAN Technologies for IoT and M2M Applications. Elsevier, March 2020. ISBN 9780128188804
Saeed, R.A., (ed.): WiMAX, LTE, and WiFi interworking. J. Comput. Syst. Netw. Commun. 2010, 2 (2010). Article ID 754187
Raza, S., Wang, S., Ahmed, M., Anwar, M.R.: A survey on vehicular edge computing: architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019 (20119). Article ID 3159762
Hassan, M.B., Ali, E.S., Nurelmadina, N., Saeed, R.A.: Artificial intelligence in IoT and its applications. In: Intelligent Wireless Communications. IET Book Publisher (2020)
Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2017)
Eom, J., Kim, H., Lee, S.H., Kim, S.: DNN-assisted cooperative localization in vehicular networks. Energies 12(14), 2758 (2019)
Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., Shen, X.: Deep reinforcement learning for autonomous internet of things: model, applications and challenges. IEEE Commun. Surv. Tut. 22(3), 1722–1760 (2020)
Sagar, R.: Why deep learning is a costly affair. Anal. India Mag. (2020)
Robinds, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR 269, 543– 547 (1983). Translated as Soviet. Math. Docl.
Saeed, R.A., Khatun, S., Ali, B.M., Khazani, M.: A juoint PHY/MAC cross-layer design for UWB under power control. Comput. Electr. Eng. (CAEE) 36(3), 455–468 (2010)
Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747, January 2016
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Alatabani, L.E., Ali, E.S., Saeed, R.A. (2021). Deep Learning Approaches for IoV Applications and Services. In: Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., Markakis, E.K. (eds) Intelligent Technologies for Internet of Vehicles. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-76493-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-76493-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76492-0
Online ISBN: 978-3-030-76493-7
eBook Packages: Computer ScienceComputer Science (R0)