Skip to main content

Machine Learning Technologies in Internet of Vehicles

Part of the Internet of Things book series (ITTCC)

Abstract

Recently, there was much interest in Technology which has emerged greatly to the development of smart cars. Internet of Vehicle (IoV) enables vehicles to communicate with public networks and interact with surrounding environment. It also enables vehicles to exchange information in addition to collect information about other vehicles and roads. However, actual applications of smart IoV systems face many challenges. These challenges are related to different problematic issues like big data connection with IoV, cloud network, data processing, and efficient communication between a large amount of different vehicles types, in addition to optimum decision data processing on or off board. Intelligence of the huge amount of data that can be processed to reduce road congestion and improve traffic management, as well as ensuring road safety is an important issue in future IoV trends.

Artificial Intelligence (AI) technology with Machine Learning (ML) mechanisms offers smart solutions that can improve IoV network efficiency. For example, decision for data processing at various layers i.e. on-board units (OBUs), Fog level or cloud level are one of the problems which need ML algorithms. Other critical issues that can be resolved by ML mechanisms are time, energy, rapid topology of IoV, optimization quality of experience (QoE) and channel modeling. These issues need to be optimized. This chapter provides theoretical fundamentals for ML models, algorithms in IoV applications and future directions.

Keywords

  • IoV
  • Machine learning
  • V2E
  • Deep learning
  • Optimization QoE
  • Autonomous driving
  • Smart transportation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tong, W., et al.: Artificial intelligence for vehicle-to-everything: a survey, vol. 4. IEEE (2018)

    Google Scholar 

  2. Yang, H., et al.: Artificial intelligence-enabled intelligent 6G networks. arXiv (2019)

    Google Scholar 

  3. Eltahir, A.A., Saeed, R.A., Mukherjee, A., Hasan, M.K.: Evaluation and analysis of an enhanced hybrid wireless mesh protocol for vehicular ad-hoc network. EURASIP J. Wirel. Commun. Netw. 2016(1), 1–11 (2016)

    CrossRef  Google Scholar 

  4. Dai, Y., et al.: Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Wirel. Commun. 26, 12–18 (2019)

    CrossRef  Google Scholar 

  5. Ji, H., et al.: Artificial intelligence-empowered edge of vehicles: architecture, enabling technologies, and applications. IEEE Access 8, 61020–61034 (2020)

    CrossRef  Google Scholar 

  6. Sodhro, A.H., et al.: Artificial Intelligence based QoS optimization for multimedia communication in IoV systems. Fut. Gener. Comput. Syst. 95, 667–680 (2018)

    CrossRef  Google Scholar 

  7. Hassan, M.B., Ali, E.S., Mokhtar, R.A., Saeed, R.A., Chaudhari, B.S.: NB-IoT: concepts, applications, and deployment challenges, chap. 6. In: Chaudhari, B.S., Zennaro, M. (eds.) LPWAN Technologies for IoT and M2M Applications. Elsevier, March 2020. ISBN 9780128188804

    Google Scholar 

  8. Dai, Y., et al.: Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Wirel. Commun. 26(3), 12–18 (2019)

    CrossRef  Google Scholar 

  9. Ahmed, E.S.A., Saeed, R.A.: A survey of big data cloud computing security. Int. J. Comput. Sci. Softw. Eng. (IJCSSE) 3(1), 78–85 (2014)

    Google Scholar 

  10. Mohammed, Z.K.A., Ahmed, E.S.A.: Internet of things applications, challenges and related future technologies. WSN 67(2), 126–148 (2017)

    Google Scholar 

  11. He, W., et al.: Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inf. 10(2), 1587–1595 (2014)

    CrossRef  Google Scholar 

  12. Ahmed, Z.E., Saeed, R.A., Ghopade, S.N., Mukherjee, A.: Energy optimization in LPWANs by using heuristic techniques, chap. 11. In: Chaudhari, B.S., Zennaro, M. (eds.) LPWAN Technologies for IoT and M2M Applications. Elsevier, March 2020. ISBN 9780128188804

    Google Scholar 

  13. Borcoci, E., et al.: Internet of vehicles functional architectures - comparative critical study. In: The 9th International Conference on Advances in Future Internet, AFIN 2017 (2017)

    Google Scholar 

  14. Mao, Y., et al.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19, 2322–2358 (2017)

    CrossRef  Google Scholar 

  15. Xu, J., et al.: Joint service caching and task offloading for mobile edge computing in dense networks. arXiv (2018)

    Google Scholar 

  16. Cao, Y., et al.: An EV charging management system concerning drivers’ trip duration and mobility uncertainty. IEEE Trans. Syst. Man Cybern. Syst. 48, 596–607 (2016)

    CrossRef  Google Scholar 

  17. Nguyen, H., et al.: Deep learning methods in transportation domain: a review. IET Intell. Transp. Syst. 12(9), 998–1004·(2018)

    Google Scholar 

  18. Alhilal, A., et al.: Distributed vehicular computing at the dawn of 5G: a survey. arXiv (2020)

    Google Scholar 

  19. Jagadessan, J., et al.: A Machine Learning Algorithm for Jitter reduction and Video Quality Enhancement in IoT Environment. Int. J. Eng. Adv. Technol. (IJEAT) 8(4), 667–672 (2019). ISSN 2249-8958

    Google Scholar 

  20. Hu, S., et al.: A fuzzy QoS optimization method with energy efficiency for the internet of vehicles. Adv. Netw. 4, 34–44 (2016)

    Google Scholar 

  21. Sodhro, A.H., et al.: Artificial Intelligence based QoS optimization for multimedia communication in IoV systems. Fut. Gener. Comput. Syst. 95, 667–680 (2019)

    CrossRef  Google Scholar 

  22. De Filippo, M., Grazia, De., Zucchetto, D., Testolin, A., Zanella, A., Zorzi, M., Zorzi, M.: QoE multi-stage machine learning for dynamic video streaming. IEEE Trans. Cogn. Commun. Netw. 4(1), 146–161 (2018)

    CrossRef  Google Scholar 

  23. Lai, C.-F., e al.: A buffer-aware QoS streaming approach for SDN-enabled 5G vehicular networks. IEEE Commun. Mag. 55, 68–73 (2017)

    Google Scholar 

  24. Saeed, R.A., Mokhtar, R., Khatun, S.: Spectrum sensing and sharing for cognitive radio and advanced spectrum management. ICGST Int. J. Comput. Netw. Internet Res. (CNIR) 9(2), 87–97 (2009)

    Google Scholar 

  25. Zeng, M., et al.: QoE-aware power management in vehicle-to-grid networks: a matching-theoretic approach. IEEE Trans. Smart Grid 9, 2468–2477 (2016)

    CrossRef  Google Scholar 

  26. Bozkaya, E., et al.: Software-defined management model for energy-aware vehicular networks. EAI Endorsed Trans. Wirel. Spectr. 3, e5 (2017)

    Google Scholar 

  27. Zhao, Y., et al.: A survey of networking applications applying the software defined networking concept based on machine learning. IEEE Access 7, 95397–95417 (2019)

    CrossRef  Google Scholar 

  28. Nguyen, T.N.: The challenges in ML-based security for SDN. In: 2nd Cyber Security in Networking Conference (CSNet) (2018)

    Google Scholar 

  29. Hasan, K.F., et al.: Cognitive internet of vehicles: motivation, layered architecture and security issues. In: International Conference on Sustainable Technologies for Industry 4.0 (STI) (2019)

    Google Scholar 

  30. Chen, C., et al.: A rear-end collision prediction scheme based on deep learning in the Internet of Vehicles. J. Parallel Distrib. Comput. 117, 192–204 (2017)

    CrossRef  Google Scholar 

  31. Tan, L.T., et al.: Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Trans. Veh. Technol. 67(11), 10190–10203 (2018)

    CrossRef  Google Scholar 

  32. Chang, Z., et al.: Learn to cache: machine learning for network edge caching in the Big Dta era. IEEE Wirel. Commun. 25(3), 28–35 (2018)

    CrossRef  Google Scholar 

  33. Ning, Z., Dong, P., Wang, X., Rodrigues, J.J.P.C., Xia, F.: Deep reinforcement learning for vehicular edge computing: an intelligent offloading system. ACM Trans. Intell. Syst. Technol. 10(6), 1–24 (2019)

    CrossRef  Google Scholar 

  34. Zhang, H., et al.: Deep reinforcement learning-based offloading decision optimization in mobile edge computing. In: IEEE Wireless Communications and Networking Conference (WCNC) (2019)

    Google Scholar 

  35. Li, M., Gao, J., Zhang, N., Zhao, L., Shen, X.: Collaborative computing in vehicular networks: a deep reinforcement learning approach. ICC 2020 - IEEE International Conference on Communications (ICC). pp. 1–6 (2020)

    Google Scholar 

  36. Ye, H., et al.: Machine learning for vehicular networks: recent advances and application examples. IEEE Veh. Technol. Mag. 13(2), 94–101 (2018)

    CrossRef  Google Scholar 

  37. Lai, W.K., et al.: A machine learning system for routing decision-making in urban vehicular ad hoc networks. Int. J. Distrib. Sens. Netw. 2015, 1–3 (2015)

    Google Scholar 

  38. Khayyam, H., et al.: Artificial intelligence and internet of things for autonomous vehicles. In: Nonlinear Approaches in Engineering Applications. Springer, Heidelberg (2020)

    Google Scholar 

  39. Li, J., et al.: Survey on artificial intelligence for vehicles. Automot. Innov. 1, 2–4 (2018)

    CrossRef  Google Scholar 

  40. Fan, C.-Y., et al.: using machine learning to forecast patent quality – take “vehicle networking” industry for example. In: Volume 5: Trans disciplinary Engineering: A Paradigm Shift (2017)

    Google Scholar 

  41. Gu, J., et al.: Introduction to the special section on machine learning-based internet of vehicles: theory, methodology, and applications. IEEE Trans. Veh. Technol. 68(5), 4105–4109 (2019)

    CrossRef  Google Scholar 

  42. Wang, M., et al.: Machine learning for networking: workflow, advances and opportunities. IEEE Netw. 32, 925–999 (2017)

    Google Scholar 

  43. de Hoog, J., et al; Improving machine learning-based decision-making through inclusion of data quality. In: BNAIC/BENELEARN Computer Science (2019)

    Google Scholar 

  44. Zerilli, J., et al.: Algorithmic decision-making and the control problem. Minds Mach. 29, 555–578 (2019)

    CrossRef  Google Scholar 

  45. Usama, M., et al.: Unsupervised machine learning for networking: techniques, applications and research challenges. In: ACCESS 2019 (2019)

    Google Scholar 

  46. Bithas, P.S., et al.: A survey on machine-learning techniques for UAV-based communications. Sensors 19, 5170 (2019)

    CrossRef  Google Scholar 

  47. Mozaffari, S., et al.: Deep learning-based vehicle behavior prediction for autonomous driving applications: a review. arXiv (2019)

    Google Scholar 

  48. Fan, X., et al.: A deep learning approach for net location prediction. In: Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (2018)

    Google Scholar 

  49. Jiang, H., et al.: Trajectory prediction of vehicles based on deep learning. In: The 4th International Conference on Intelligent Transportation Engineering (2019)

    Google Scholar 

  50. Hussain, F., et al.: Machine learning for resource management in cellular and IoT networks: potentials, current solutions, and open challenges. arXiv (2019)

    Google Scholar 

  51. Chen, M., et al.: Artificial neural networks-based machine learning for wireless networks: a tutorial. arXiv (2019)

    Google Scholar 

  52. Yang, H., et al.: Intelligent resource management based on reinforcement learning for ultra-reliable and low-latency IoV communication networks. IEEE Trans. Veh. Technol. 68, 4157–4169 (2019)

    CrossRef  Google Scholar 

  53. Abduljabbar, R., et al.: Applications of artificial intelligence in transport: an overview. Sustainability 11, 189 (2019)

    CrossRef  Google Scholar 

  54. Xing, Y., et al.: Driver activity recognition for intelligent vehicles: a deep learning approach. IEEE Trans. Veh. Technol. 68, 5379–5390 (2019)

    CrossRef  Google Scholar 

  55. Grigorescu, S., et al.: A survey of deep learning techniques for autonomous driving. arXiv (V)

    Google Scholar 

  56. Peng, Z., et al.: Vehicle safety improvement through deep learning and mobile sensing. IEEE Netw. 32, 28–33 (2018)

    CrossRef  Google Scholar 

  57. Moujahid, A., et al: Machine learning techniques in ADAS: a review. In: International Conference on Advances in Computing and Communication Engineering, ICACCE-2018, Paris (2018)

    Google Scholar 

  58. Ball, J.E., Tang, B.: Machine learning and embedded computing in advanced driver assistance systems (ADAS). Electronics 8, 748 (2019)

    CrossRef  Google Scholar 

  59. Zantalis, F., et al.: A review of machine learning and IoT in smart transportation. Fut. Internet 11, 94 (2019)

    CrossRef  Google Scholar 

  60. Veres, M., et al.: Deep learning for intelligent transportation systems: a survey of emerging trends. IEEE Trans. Intell. Transp. Syst. 21, 3152–3168 (2019)

    CrossRef  Google Scholar 

  61. Howard, A.J., et al.: Distributed data analytics framework for smart transportation. In: IEEE 20th International Conference on High Performance Computing and Communications (2018)

    Google Scholar 

  62. Lana, I., et al.: From data to actions in intelligent transportation systems: a prescription of functional requirements for model actionability. arXiv (2020)

    Google Scholar 

  63. Stilgoe, J.: Machine learning, social learning and the governance of self-driving cars. Soc. Stud. Sci. 48(1), 25–56 (2018)

    CrossRef  Google Scholar 

  64. Adi, E., et al.: Machine learning and data analytics for the IoT. Neural Comput. Appl. 33, 16205–16233 (2020)

    CrossRef  Google Scholar 

  65. Yuan, T., et al.: Harnessing machine learning for next-generation intelligent transportation systems: a survey. HAL archive-ouverter.fr (2019)

    Google Scholar 

  66. Nawaz, S.J., et al.: Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future. IEEE Access 7, 46317–46350 (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, E.S., Hassan, M.B., Saeed, R.A. (2021). Machine Learning Technologies in Internet of Vehicles. In: Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., Markakis, E.K. (eds) Intelligent Technologies for Internet of Vehicles. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-76493-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76493-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76492-0

  • Online ISBN: 978-3-030-76493-7

  • eBook Packages: Computer ScienceComputer Science (R0)