Skip to main content

Attack Models and Countermeasures for Autonomous Vehicles

Part of the Internet of Things book series (ITTCC)


With the rapid development of smart transportation, autonomous vehicles (AVs) are becoming one of the most anticipating means of transport. However, as the complexity of autonomous vehicles is increasing, it is intuitive that it would bring along with more possible attacks and higher potential risks. For example, by tampering the in-car sensors or hacking into any of the electronic control units (ECUs) in the vehicle, it could severely affect the driving performance or even cause life-threatening situations to users. Moreover, since AVs will also be the Internet of Vehicles (IoVs) that connect to the vehicular network in the future, the network security of the intra-vehicular and inter-vehicular links should also be carefully studied. To identify and mitigate the security risks involved in AV holistically, in this chapter, we provide a comprehensive taxonomy for attack surfaces and countermeasures for defense. Specifically, four different attack surfaces are defined, namely ECUs, sensors, intra-vehicular links, and inter-vehicular links. For each of the attack surfaces, various common attack vectors are discussed in detail. Subsequently, we also provide a survey of the latest major existing work for defending the attacks on each surface. We hope this chapter can be a guide for the general public to understand the security aspect of AVs, as well as to encourage future researchers to improve the security in AVs.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 77, 167–181 (2015).

    CrossRef  Google Scholar 

  2. Nie, S., Liu, L., Du, Y.: Free-fall: hacking tesla from wireless to can bus. Black hat USA 2017, pp. 1–16 (2017)

  3. Povolny, S., Trivedi, S.: Model Hacking ADAS to Pave Safer Roads for Autonomous Vehicles | McAfee Blogs, McAfee Labs (2020). Accessed 19 Jun 2020

  4. Ruffo, G.H.: Tesla Data Leak: Old Components With Personal Info Find Their Way On eBay, Insideevs (2020). Accessed 22 Jun 2020

  5. Jo, H.J., Choi, W., Na, S.Y., Woo, S., Lee, D.H.: Vulnerabilities of android OS-based telematics system. Wireless Pers. Commun. 92(4), 1511–1530 (2017).

    CrossRef  Google Scholar 

  6. Cao, Y., Zhou, Y., Chen, Q.A., Xiao, C., Park, W., Fu, K., Cyr, B., Rampazzi, S., Morley Mao, Z.: Adversarial sensor attack on LiDAR-based perception in autonomous driving. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 2267–2281 (2019).

  7. Minuth, J.: FlexRayTM electrical physical layer: Theory, components, and examples. In: Communication in Transportation Systems, pp. 117–175 (2013).

  8. Wang, G., Wang, B., Wang, T., Nika, A., Zheng, H., Zhao, B.Y.: Defending against sybil devices in crowdsourced mapping services. In: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys 2016, pp. 179–191 (2016).

  9. Baza, M., Nabil, M., Lasla, N., Fidan, K., Mahmoud, M., Abdallah, M.: Blockchain-based firmware update scheme tailored for autonomous vehicles. In: IEEE Wireless Communications and Networking Conference, WCNC, vol. 2019, pp. 1–7 (2019).

  10. Yu, L., Deng, J., Brooks, R.R., Yun, S.B.: Automobile ECU design to avoid data tampering. In: ACM International Conference Proceeding Series, vol. 06–08 (2015).

  11. Mansor, H., Markantonakis, K., Akram, R.N., Mayes, K.: Don’t brick your car: Firmware confidentiality and rollback for vehicles. In: Proceedings - 10th International Conference on Availability, Reliability and Security, ARES 2015, pp. 139–148 (2015).

  12. Idrees, M.S., Schweppe, H., Roudier, Y., Wolf, M., Scheuermann, D., Henniger, O.: Secure automotive on-board protocols: A case of over-the-air firmware updates. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6596 LNCS, pp. 224–238 (2011).

  13. El-Said, M.: ECU counterfeit mitigation using holistic approach in modern automotive echo system. In: 2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020, pp. 16–17 (2020).

  14. Kurachi, R., Takada, H., Adachi, N., Ueda, H., Miyashita, Y.: Asymmetric key-based secure ECU replacement without PKI. In: Proceedings of IEEE International Symposium on High Assurance Systems Engineering, vol. 2019, pp. 234–240 (2019).

  15. Dutta, R.G., Guo, X., Zhang, T., Kwiat, K., Kamhoua, C., Njilla, L., Jin, Y.: Estimation of safe sensor measurements of autonomous system under attack. In: Proceedings - Design Automation Conference, vol. Part 12828 (2017).

  16. Guan, Z., Chen, Y., Lei, P., Li, D., Zhao, Y.: Application of hash function on FMCW based millimeter-wave radar against DRFM jamming. IEEE Access 7, 92285–92295 (2019).

    CrossRef  Google Scholar 

  17. Matsumura, R., Sugawara, T., Sakiyama, K.: A secure LiDAR with AES-based side-channel fingerprinting. In: Proceedings - 2018 6th International Symposium on Computing and Networking Workshops, CANDARW 2018, pp. 479–482 (2018)

  18. Changalvala, R., Malik, H.: LiDAR data integrity verification for autonomous vehicle using 3D data hiding. In: 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019, vol. 7, pp. 1219–1225 (2019)

  19. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote Attacks on Automated Vehicles Sensors: Experiments on Camera and LiDAR., pp. 1–13 (2015).

  20. Yadav, S., Ansari, A.: Autonomous Vehicles Camera Blinding Attack Detection Using Sequence Modelling and Predictive Analytics. SAE Technical Papers, vol. 2020-April, no. April, pp. 1–6, 2020, doi:

  21. O’Hanlon, B.W., Psiaki, M.L., Bhatti, J.A., Shepard, D.P., Humphreys, T.E.: Real-time GPS spoofing detection via correlation of encrypted signals. Navig J. Ins. Navig. 60(4), 267–278 (2013).

    CrossRef  Google Scholar 

  22. Psiaki, M.L., O’Hanlon, B.W., Powell, S.P., Bhatti, J.A., Wesson, K.D., Humphreys, T.E., Schofield, A.: GNSS spoofing detection using two-antenna differential carrier phase. In: 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2014, vol. 4, pp. 2776–2800 (2014)

    Google Scholar 

  23. Shafiee, E., Mosavi, M.R., Moazedi, M.: Detection of spoofing attack using machine learning based on multi-layer neural network in single-frequency GPS receivers. J. Navig. 71(1), 169–188 (2018).

    CrossRef  Google Scholar 

  24. Kang, M.J., Kang, J.W.: Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 11(6), 1–17 (2016).

    CrossRef  Google Scholar 

  25. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In: 2016 International Conference on Information Networking (ICOIN), pp. 63–68 (2016).

  26. Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R., Chakraborty, S.: Automotive electrical and electronic architecture security via distributed in-vehicle traffic monitoring. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(11), 1790–1803 (2017).

    CrossRef  Google Scholar 

  27. Hafeez, A., Topolovec, K., Awad, S.: ECU fingerprinting through parametric signal modeling and artificial neural networks for in-vehicle security against spoofing attacks. In: ICENCO 2019 - 2019 15th International Computer Engineering Conference: Utilizing Machine Intelligence for a Better World, pp. 29–38 (2019).

  28. Agrawal, M., Huang, T., Zhou, J., Chang, D.: CAN-FD-sec: improving security of CAN-FD protocol. In: Hamid, B., Gallina, B., Shabtai, A., Elovici, Y., Garcia-Alfaro, J. (eds.) Security and Safety Interplay of Intelligent Software Systems: ESORICS 2018 International Workshops, ISSA 2018 and CSITS 2018, Barcelona, Spain, September 6–7, 2018, Revised Selected Papers, pp. 77–93. Springer, Cham (2019)

    CrossRef  Google Scholar 

  29. Celes, A.A., Elizabeth, N.E.: Verification based authentication scheme for bogus attacks in VANETs for secure communication. In: Proceedings of the 2018 IEEE International Conference on Communication and Signal Processing, ICCSP 2018, pp. 388–392 (2018)

  30. Gao, J., Agyekum, K.O.B.O., Sifah, E.B., Acheampong, K.N., Xia, Q., Du, X., Guizani, M., Xia, H.: A blockchain-SDN-enabled internet of vehicles environment for fog computing and 5G networks. IEEE Internet Things J. 7(5), 4278–4291 (2020).

    CrossRef  Google Scholar 

  31. Luo, B., Li, X., Weng, J., Guo, J., Ma, J.: Blockchain enabled trust-based location privacy protection scheme in VANET. IEEE Trans. Veh. Technol. 69(2), 2034–2048 (2020).

    CrossRef  Google Scholar 

  32. Kong, Q., Su, L., Ma, M.: Achieving privacy-preserving and verifiable data sharing in vehicular fog with block chain. IEEE Trans. Intell. Transp. Syst. 1–10 (2020).

  33. Raiyn, J.: Data and cyber security in autonomous vehicle networks. Transp. Telecommun. 19(4), 325–334 (2018).

    CrossRef  Google Scholar 

  34. Wang, F., Xu, Y., Zhang, H., Zhang, Y., Zhu, L.: 2FLIP: A two-factor lightweight privacy-preserving authentication scheme for VANET. IEEE Trans. Veh. Technol. 65(2), 896–911 (2016).

    CrossRef  Google Scholar 

  35. Shao, J., Lin, X., Lu, R., Zuo, C.: A threshold anonymous authentication protocol for VANETs. IEEE Trans. Veh. Technol. 65(3), 1711–1720 (2016).

    CrossRef  Google Scholar 

  36. Zhang, L., Meng, X., Choo, K.K.R., Zhang, Y., Dai, F.: Privacy-preserving cloud establishment and data dissemination scheme for vehicular cloud. IEEE Trans. Dependable Secure Comput. 17(3), 634–647 (2020).

    CrossRef  Google Scholar 

  37. Ahmad, F., Kurugollu, F., Adnane, A., Hussain, R., Hussain, F.: MARINE: man-in-the-middle attack resistant trust model in connected vehicles. IEEE Internet of Things Journal 7(4), 3310–3322 (2020).

    CrossRef  Google Scholar 

  38. He, D., Zeadally, S., Xu, B., Huang, X.: An efficient identity-based conditional privacy-preserving authentication scheme for vehicular Ad Hoc networks. IEEE Trans. Inf. Forensics Secur. 10(12), 2681–2691 (2015).

    CrossRef  Google Scholar 

Download references


This research is supported by A*STAR under its RIE2020 Advanced Manufacturing and Engineering (AME) Industry Alignment Fund – Pre-Positioning (IAF-PP), Singapore (Grant No. A19D6a0053).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Maode Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chow, M.C., Ma, M., Pan, Z. (2021). Attack Models and Countermeasures for Autonomous Vehicles. In: Magaia, N., Mastorakis, G., Mavromoustakis, C., Pallis, E., Markakis, E.K. (eds) Intelligent Technologies for Internet of Vehicles. Internet of Things. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76492-0

  • Online ISBN: 978-3-030-76493-7

  • eBook Packages: Computer ScienceComputer Science (R0)