Skip to main content

Proteome and Membrane Channels

  • Chapter
  • First Online:
Book cover Biosensors and Biochips

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

In this chapter, you will learn about the methods for analyzing a proteome. After looking at the classical method of 2D electrophoresis, we will explore some concepts and challenges of protein microarrays and discuss different detection methods. Moreover, you will get an introduction to the patch-clamp method for studying the physiology of cells and its use in pharmacology.

You will be able to explain how protein chips work and their potential use in medical diagnostics. Furthermore, you will be able to describe how to assess efficacy and side effects of drugs by patch-clamping techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Human Ether-a-go-go Related Gene (hERG) encodes the Kv11.1 potassium channel, which is responsible for the repolarizing current in the cardiac action potential. The vast majority of drugs associated with acquired long QT syndrome are known to interact with the hERG potassium channel.

References

  1. Pasquarelli A. Biochips: technologies and applications. Mater Sci Eng C. 2008;28(4):495–508.

    Article  CAS  Google Scholar 

  2. Raymond S, Aurell B. Two-dimensional gel electrophoresis. Science. 1962;138(3537):152.

    Article  PubMed  CAS  Google Scholar 

  3. Macgillivray AJ, Wood DR. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem. 1974;41(1):181–90.

    Article  PubMed  CAS  Google Scholar 

  4. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–21.

    Article  PubMed  CAS  Google Scholar 

  5. Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73(11):2064–77.

    Article  PubMed  CAS  Google Scholar 

  6. Berth M, Moser FM, Kolbe M, Bernhardt J. The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol. 2007;76(6):1223–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. The creative commons copyright licenses. https://creativecommons.org/licenses/.

  8. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol. 2003;7(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  9. Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD. A critical comparison of protein microarray fabrication technologies. Analyst. 2014;139(6):1303–26.

    Article  PubMed  CAS  Google Scholar 

  10. Gupta S, Manubhai KP, Kulkarni V, Srivastava S. An overview of innovations and industrial solutions in protein microarray technology. Proteomics. 2016;16(8):1297–308.

    Article  PubMed  CAS  Google Scholar 

  11. Pla-Roca M, Leulmi RF, Tourekhanova S, Bergeron S, Laforte V, Moreau E, et al. Antibody colocalization microarray: a scalable technology for multiplex protein analysis in complex samples. Molecular Cellular Proteomics. 2012;11(4):011460.

    Article  PubMed  CAS  Google Scholar 

  12. Rubina AY, Kolchinsky A, Makarov AA, Zasedatelev AS. Why 3-D? Gel-based microarrays in proteomics. Proteomics. 2008;8(4):817–31.

    Article  PubMed  CAS  Google Scholar 

  13. Yu X, Xu D, Cheng Q. Label-free detection methods for protein microarrays. Proteomics. 2006;6(20):5493–503.

    Article  PubMed  CAS  Google Scholar 

  14. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53–68.

    Article  CAS  Google Scholar 

  15. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(8):151–3.

    Article  CAS  Google Scholar 

  16. Hou T-Y, Chiang-Ni C, Teng S-H. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J Food Drug Anal. 2019;27(2):404–14.

    Article  PubMed  CAS  Google Scholar 

  17. Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchens TW, Yip T-T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7(7):576–80.

    Article  CAS  Google Scholar 

  19. Wright GL Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diagn. 2002;2(6):549–63.

    Article  PubMed  CAS  Google Scholar 

  20. Lambacher A, Jenkner M, Merz M, Eversmann B, Kaul RA, Hofmann F, et al. Electrical imaging of neuronal activity by multi-transistor-array (MTA) recording at 7.8 μm resolution. Appl Phys. 2004;79(7):1607–11.

    Article  CAS  Google Scholar 

  21. Reddy G, Dalmasso EA. SELDI ProteinChip® array technology: protein-based predictive medicine and drug discovery applications. J Biomed Biotechnol. 2003;2003:874759.

    Article  Google Scholar 

  22. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000;21(6):1164–77.

    Article  PubMed  CAS  Google Scholar 

  23. Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun. 2002;292(3):587–92.

    Article  PubMed  CAS  Google Scholar 

  24. Ndao M, Spithill TW, Caffrey R, Li H, Podust VN, Perichon R, et al. Identification of novel diagnostic serum biomarkers for chagas; disease in asymptomatic subjects by mass spectrometric profiling. J Clin Microbiol. 2010;48(4):1139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wilson LL, Tran L, Morton DL, Hoon DS. Detection of differentially expressed proteins in early-stage melanoma patients using SELDI-TOF mass spectrometry. Ann N Y Acad Sci. 2004;1022:317–22.

    Article  PubMed  CAS  Google Scholar 

  26. Engwegen JY, Gast MC, Schellens JH, Beijnen JH. Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci. 2006;27(5):251–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ndao M, Rainczuk A, Rioux M-C, Spithill TW, Ward BJ. Is SELDI-TOF a valid tool for diagnostic biomarkers? Trends Parasitol. 2010;26(12):561–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys. 2019;664:134–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Deng X, Xiong F, Li X, Xiang B, Li Z, Wu X, et al. Application of atomic force microscopy in cancer research. J Nanobiotechnol. 2018;16(1):102.

    Article  CAS  Google Scholar 

  30. Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J, Henderson E. Functional protein nanoarrays for biomarker profiling. Proteomics. 2004;4(6):1695–702.

    Article  PubMed  CAS  Google Scholar 

  31. Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJL, et al. Atomic force microscopy-based mechanobiology. Nature Rev Phys. 2019;1(1):41–57.

    Article  Google Scholar 

  32. Syu G-D, Dunn J, Zhu H. Developments and applications of functional protein microarrays. Mol Cell Proteomics. 2020;19(6):916–27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ayton LN, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, et al. An update on retinal prostheses. Clin Neurophysiol. 2020;131(6):1383–98.

    Article  PubMed  Google Scholar 

  34. Sakmann B, Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 1984;46:455–72.

    Article  PubMed  CAS  Google Scholar 

  35. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260(5554):799–802.

    Article  PubMed  CAS  Google Scholar 

  36. Martinez D, Py C, Denhoff MW, Martina M, Monette R, Comas T, et al. High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip. Biomed Microdevices. 2010;12(6):977–85.

    Article  PubMed  CAS  Google Scholar 

  37. Priest BT, McDermott JS. Cardiac ion channels. Channels. 2015;9(6):352–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goldman DE. Potential, impedance, and rectification in membranes. J Gen Physiol. 1943;27(1):37–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949;108(1):37–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nattel S, Carlsson L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov. 2006;5(12):1034–49.

    Article  PubMed  CAS  Google Scholar 

  41. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ channels: structure, function, and clinical significance. Physiol Rev. 2012;92(3):1393–478.

    Article  PubMed  CAS  Google Scholar 

  42. Zrenner E, Stett A, Rubow R. The challenge to meet the expectations of patients, ophthalmologists and public health care systems with current retinal prostheses. Invest Ophthalmol Vis Sci. 2020;61(7):2214.

    Google Scholar 

  43. Ridder BJ, Leishman DJ, Bridgland-Taylor M, Samieegohar M, Han X, Wu WW, et al. A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm. Toxicol Appl Pharmacol. 2020;394:114961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Danker T, Möller C. Early identification of hERG liability in drug discovery programs by automated patch clamp. Front Pharmacol. 2014;5:203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mahfooz K, Ellender TJ. Combining whole-cell patch-clamp recordings with single-cell RNA sequencing. In: Dallas M, Bell D, editors. Patch clamp electrophysiology: methods and protocols. New York: Springer; 2021. p. 179–89.

    Chapter  Google Scholar 

  46. Zhou Y, Li H, Xiao Z. In vivo patch-clamp studies. In: Dallas M, Bell D, editors. Patch clamp electrophysiology: methods and protocols. New York: Springer; 2021. p. 259–71.

    Chapter  Google Scholar 

  47. Brueggemann A, George M, Klau M, Beckler M, Steindl J, Behrends JC, et al. Ion channel drug discovery and research: the automated Nano-patch-clamp technology. Curr Drug Discov Technol. 2004;1(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  48. Lewis PM, Rosenfeld JV. Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective. Brain Res. 2016;1630:208–24.

    Article  PubMed  CAS  Google Scholar 

  49. Utah electrode array. https://www.blackrockmicro.com/electrode-types/utah-array/.

  50. Maynard EM, Nordhausen CT, Normann RA. The Utah Intracortical electrode Array: a recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol. 1997;102(3):228–39.

    Article  PubMed  CAS  Google Scholar 

  51. Brüggemann A, Farre C, Haarmann C, Haythornthwaite A, Kreir M, Stoelzle S, et al. Planar patch clamp: advances in electrophysiology. In: Lippiat JD, editor. Potassium channels: methods and protocols. Totowa, NJ: Humana Press; 2009. p. 165–76.

    Google Scholar 

  52. Obergrussberger A, Friis S, Brüggemann A, Fertig N. Automated patch clamp in drug discovery: major breakthroughs and innovation in the last decade. Expert Opin Drug Discovery. 2021;16(1):1–5.

    Article  Google Scholar 

  53. Fernández E, Alfaro A, González-López P. Toward long-term communication with the brain in the blind by intracortical stimulation: challenges and future prospects. Front Neurosci. 2020;14:681.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Troyk PR. The intracortical visual prosthesis project. In: Gabel VP, editor. Artificial vision: a clinical guide. Cham: Springer; 2017. p. 203–14.

    Chapter  Google Scholar 

  55. Rosholm KR, Boddum K, Lindquist A. Perforated whole-cell recordings in automated patch clamp electrophysiology. In: Dallas M, Bell D, editors. Patch clamp electrophysiology: methods and protocols. New York: Springer; 2021. p. 93–108.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasquarelli, A. (2021). Proteome and Membrane Channels. In: Biosensors and Biochips. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-76469-2_10

Download citation

Publish with us

Policies and ethics