Skip to main content

Plug-and-Play Haptic Interaction for Tactile Internet Based on WebRTC

  • 488 Accesses

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 377)

Abstract

Tactile Internet promises a widespread adoption of haptic communication over the Internet. However, as haptic technologies are becoming more diversified and available than ever, the need has arisen for a plug-and-play (PnP) haptic communication over a computer network. This paper presents a system for enabling PnP communication of heterogeneous haptic interfaces. The system is based on three key features: (i) a haptic metadata to make haptic interfaces self-descriptive, (ii) a handshake protocol to automatically exchange haptic metadata between two communicating devices, and (iii) a multimodal (haptic-audio-visual) media communication protocol. Implemented using WebRTC, the PnP communication is evaluated using a Tele-Writing application with two heterogeneous haptic interfaces, namely Geomagic Touch and Novint Falcon. Our findings demonstrate the potential of the system to be employed in any Tactile Internet scenario.

Keywords

  • Tactile Internet (TI)
  • Haptic-Audio-Visual (HAV) handshake
  • TI Metadata (TIM)
  • WebRTC
  • Request/response

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jami. https://jami.net/

  2. Linphone. https://www.linphone.org/

  3. Retroshare. https://retroshare.readthedocs.io

  4. Riot. https://about.riot.im/

  5. Webrtc samples munge SDP. https://webrtc.github.io/samples/src/content/peerconnection/munge-sdp/

  6. Aijaz, A., Dohler, M., Aghvami, A.H., Friderikos, V., Frodigh, M.: Realizing the tactile internet: haptic communications over next generation 5G cellular networks. IEEE Wirel. Commun. 24(2), 82–89 (2016)

    CrossRef  Google Scholar 

  7. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    CrossRef  MathSciNet  Google Scholar 

  8. Carter, J., et al.: The gothi model of tactile and haptic interaction. In: Proceedings of GOTHI-05 Guidelines on Tactile and Haptic Interactions, pp. 93–95 (2005)

    Google Scholar 

  9. Cha, J., Ho, Y.S., Kim, Y., Ryu, J., Oakley, I.: A framework for haptic broadcasting. IEEE Multim. 16(3), 16–27 (2009)

    CrossRef  Google Scholar 

  10. Kohlhoff, C.: Asio C++ library (2020). https://think-async.com/Asio/

  11. Dunn, C.: open-source-parsers/jsoncpp (2020). https://github.com/open-source-parsers/jsoncpp

  12. Dohler, M., et al.: Internet of skills, where robotics meets AI, 5G and the tactile internet. In: 2017 European Conference on Networks and Communications (EuCNC), pp. 1–5. IEEE (2017)

    Google Scholar 

  13. Eid, M., Andrews, S., Alamri, A., El Saddik, A.: HAMLAT: a HAML-based authoring tool for haptic application development. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 857–866. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_108

    CrossRef  Google Scholar 

  14. Fayez, R., Eid, M., Orozco, M., El Saddik, A.: Haptic applications meta-language. In: 2006 Tenth IEEE International Symposium on Distributed Simulation and Real-Time Applications, pp. 261–264. IEEE (2006)

    Google Scholar 

  15. Aboukhadijeh, F.: feross/simple-websocket (2020). https://github.com/feross/simple-websocket

  16. Fettweis, G.P.: The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014). https://doi.org/10.1109/MVT.2013.2295069

    CrossRef  Google Scholar 

  17. Conti, F.: Chai3d (2020). https://www.chai3d.org/

  18. Holland, O., et al.: The IEEE 1918.1 “tactile internet” standards working group and its standards. Proc. IEEE 107(2), 256–279 (2019). https://doi.org/10.1109/JPROC.2018.2885541

  19. IEEE P1918.1.1 Haptic Codecs for the Tactile Internet Task Group: Kinesthetic reference setup (2018). https://cloud.lmt.ei.tum.de/s/8ol5mX6TCDBS8t4

  20. Iiyoshi, K., Tauseef, M., Gebremedhin, R., Gokhale, V., Eid, M.: Towards standardization of haptic handshake for tactile internet: a WebRTC-based implementation. In: 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE), pp. 1–6. IEEE (2019)

    Google Scholar 

  21. Ivov, E.: Jitsi. The architecture of open source applications, pp. 121–132 (2011)

    Google Scholar 

  22. Jansen, B., Goodwin, T., Gupta, V., Kuipers, F., Zussman, G.: Performance evaluation of WebRTC-based video conferencing. SIGMETRICS Perform. Eval. Rev. 45(3), 56–68 (2018). https://doi.org/10.1145/3199524.3199534

  23. Johnston, A.B., Burnett, D.C.: WebRTC: APIs and RTCWEB protocols of the HTML5 real-time web. Digital Codex LLC (2012)

    Google Scholar 

  24. King, H.H., Hannaford, B., Kammerly, J., Steinbachy, E.: Establishing multimodal telepresence sessions using the session initiation protocol (SIP) and advanced haptic codecs. In: 2010 IEEE Haptics Symposium, pp. 321–325. IEEE (2010)

    Google Scholar 

  25. Loreto, S., Romano, S.P.: Real-time communications in the web: issues, achievements, and ongoing standardization efforts. IEEE Internet Comput. 16(5), 68–73 (2012). https://doi.org/10.1109/MIC.2012.115

    CrossRef  Google Scholar 

  26. Pelton, D.: Easyrtc framework tutorial (2013)

    Google Scholar 

  27. Thorson, P.: zaphoyd/websocketpp (2020). https://github.com/zaphoyd/websocketpp

  28. Rehn, A.: Websocket server demo (2020). https://github.com/adamrehn/websocket-server-demo

  29. Signes, J., Fisher, Y., Eleftheriadis, A.: Mpeg-4’s binary format for scene description. Sig. Process.: Image Commun. 15(4–5), 321–345 (2000)

    Google Scholar 

  30. The jQuery Foundation: jquery (2020). https://jquery.com/

  31. de Vries, R., Jager, G., Tijssen, I., Zandstra, E.H.: Shopping for products in a virtual world: Why haptics and visuals are equally important in shaping consumer perceptions and attitudes. Food Qual. Prefer. 66, 64–75 (2018)

    CrossRef  Google Scholar 

  32. Xu, X., Panzirsch, M., Liu, Q., Steinbach, E.: Integrating haptic data reduction with energy reflection-based passivity control for time-delayed teleoperation. In: 2020 IEEE Haptics Symposium (HAPTICS), pp. 109–114 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Eid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iiyoshi, K., Gebremedhin, R., Gokhale, V., Eid, M. (2021). Plug-and-Play Haptic Interaction for Tactile Internet Based on WebRTC. In: Shaghaghi, N., Lamberti, F., Beams, B., Shariatmadari, R., Amer, A. (eds) Intelligent Technologies for Interactive Entertainment. INTETAIN 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-76426-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76426-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76425-8

  • Online ISBN: 978-3-030-76426-5

  • eBook Packages: Computer ScienceComputer Science (R0)