Abstract
Over the years, social media platforms such as Facebook, Twitter, etc., have become a valuable resource for marketing, public relations etc. One emerging mobile instant messaging medium, Telegram, has recently gained momentum in countries such as Brazil, Indonesia, Iran, Russia, Ukraine, and Uzbekistan. While most social media platforms have been studied extensively, Telegram is still underexplored and a gold mine for researchers and social scientists to explore and study user behaviors. Moreover, the ease of data collection through its API and access to historical data makes it a lucrative platform for social computing research. This paper explores the features of Telegram and presents a methodology to collect and analyze data. We also demonstrate the viability of the platform as a source of social computing research by presenting a case study on Ukrainian Parliamentary members’ discourse. We conduct both text and network analysis to gain insights into political discourse and public opinion. Our findings include use of Telegram by Ukrainian politicians to connect with their voter base, promote their work as well as ridicule their peers. As a result, channels are actively disseminating information on current political affairs and chat groups that discuss views on Ukrainian government. From our study, we conclude that Telegram is a rich data source to study social behavior, analyze information campaigns through content dissemination, etc. This study opens plethora of research opportunities in future on Telegram.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Data and the code are available upon request.
References
Raghavan, S.: Digital forensic research: current state of the art. CSI Trans. ICT 1, 91–114 (2013). https://doi.org/10.1007/s40012-012-0008-7
Perrin, A.: Social Media Usage: 2005–2015, Washington, DC. 1 (2015)
Ratkiewicz, J., Conover, M., Meiss, M.R., Gonc¸alves, B., Flammini, A., Menczer, F.: Detecting and tracking political abuse in social media. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, pp. 297–304. The AAAI Press, Barcelona, Catalonia, Spain (2011)
Sivabalan, K., Ali, Z.: Mobile Instant Messaging as Collaborative Tool for Language Learning. Int. J. Lang. Educ. Appl. Linguist. 9, 99–109 (2019). https://doi.org/10.15282/ijleal.v9.297
Bradshaw, S., Howard, P.N.: Challenging Truth and Trust: A Global Inventory of Organized Social Media Manipulation, pp. 1–26. Project on Computational Propaganda, Oxford (2018)
DFRLab: Ukrainian media jump the gun on Russia-Ukraine prisoner swap. 1 (2019). https://medium.com/dfrlab/ukrainian-media-jump-the-gun-on-russia-ukraine-prisoner-swap-3216f860bc04
Bandeli, K.K., Agarwal, N.: Analyzing the role of media orchestration in conducting disinformation campaigns on blogs. Comput. Math. Organ. Theory. 27 (2018). https://doi.org/10.1007/s10588-018-09288-9
Hussain, M.N.: Role of Multiple Social Media Platforms in Online Campaigns, 64 (2019). https://0-search-proquest-com.library.ualr.edu/docview/2377711983?accountid=14482
Agur, C., Frisch, N.: Digital disobedience and the limits of persuasion: social media activism in Hong Kong’s 2014 Umbrella Movement. Soc. Media Soc. 5, 12 (2019). https://doi.org/10.1177/2056305119827002
Khaund, T., Bandeli, K.K., Walter, O., Agarwal, N.: A novel methodology to identify and collect data from relevant blogs leveraging multiple social media platforms and cyber forensics. In: The Fifth International Conference on Big Data, Small Data, Linked Data and Open Data, pp. 41–45. IARIA XPS Press, Valencia, Spain (2019)
Roy, A.K., Agarwal, N.: Automating blog crawling using pattern recognition. In: The Ninth International Conference on Social Media Technologies, Communication, and Informatics, pp. 32–38. IARIA XPS Press, Valencia, Spain (2019)
Hussain, M.N., Obadimu, A., Bandeli, K.K., Nooman, M., Al-khateeb, S., Agarwal, N.: A framework for blog data collection: challenges and opportunities. In: The Seventh International Conference on Advances in Information Mining and Management, pp. 35–40. IARIA XPS Press, Venice, Italy (2017)
Stieglitz, S., Dang-Xuan, L.: Social media and political communication: a social media analytics framework. Soc. Netw. Anal. Mining 3(4), 1277–1291 (2012). https://doi.org/10.1007/s13278-012-0079-3
O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pp. 122–129. AAAI Press, Washington, DC (2010)
Bollier, D., Firestone, C.M.: The Promise and Peril of Big Data, The Aspen Institute, Aspen, Colorado, p. 66 (2009)
Al-Ani, B., Mark, G., Chung, J., Jones, J.: The Egyptian blogosphere: a counter-narrative of the revolution. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 17–26. Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2145204.2145213
Anstead, N., O’Loughlin, B.: Semantic Polling: The Ethics of Online Public Opinion, The London School of Economics and Political Science, London, UK, 17 (2012).
Zeng, D., Chen, H., Lusch, R., Li, S.-H.: Social media analytics and intelligence. IEEE Intell. Syst. 25, 13–16 (2010). https://doi.org/10.1109/MIS.2010.151
Wanner, F., Rohrdantz, C., Mansmann, F., Oelke, D., Keim, D.A.: Visual sentiment analysis of RSS news feeds featuring the US Presidential Election in 2008. In: Visual Interfaces to the Social and the Semantic Web, pp. 1–8. Konstanzer Online-Publikations-System (KOPS), Sanibel Island, Florida (2009)
Asur, S., Huberman, B.A.: Predicting the future with social media. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 492–499 (2010). https://doi.org/10.1109/WI-IAT.2010.63
Ashktorab, Z., Brown, C., Nandi, M., Culotta, A.: Tweedr: Mining twitter to inform. In: 11th Proceedings of the International Conference on Information Systems for Crisis Response and Management, p. 5. University Park, Pennsylvania, USA (2014)
Chunara, R., Andrews, J.R., Brownstein, J.S.: Social and News Media Enable Estimation of Epidemiological Patterns Early in the 2010 Haitian Cholera Outbreak, 7 (2012). https://doi.org/10.4269/ajtmh.2012.11-0597
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 13 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008
Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The Development and Psychometric Properties of LIWC2015. In: Texas ScholarWorks. p. 26. The University of Texas at Austin, Austin, TX (2015).
Khaund, T., Al-Khateeb, S., Tokdemir, S., Agarwal, N.: Analyzing Social Bots and Their Coordination During Natural Disasters. In: Thomson, Robert, Dancy, Christopher, Hyder, Ayaz, Bisgin, Halil (eds.) Social, Cultural, and Behavioral Modeling. LNCS, vol. 10899, pp. 207–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93372-6_23
Khaund, T., Bandeli, K.K., Hussain, M.N., Obadimu, A., Al-Khateeb, S., Agarwal, N.: Analyzing social and communication network structures of social bots and humans. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 794–797 (2018). https://doi.org/10.1109/ASONAM.2018.8508665
Acknowledgements
This research is funded in part by the U.S. National Science Foundation (OIA-1946391, OIA-1920920, IIS-1636933, ACI-1429160, and IIS-1110868), U.S. Office of Naval Research (N00014-10-1-0091, N00014-14-1-0489, N00014-15-P-1187, N00014-16-1-2016, N00014-16-1-2412, N00014-17-1-2675, N00014-17-1-2605, N68335-19-C-0359, N00014-19-1-2336, N68335-20-C-0540), U.S. Air Force Research Lab, U.S. Army Research Office (W911NF-17-S-0002, W911NF-16-1-0189), U.S. Defense Advanced Research Projects Agency (W31P4Q-17-C-0059), Arkansas Research Alliance, the Jerry L. Maulden/Entergy Endowment at the University of Arkansas at Little Rock, and the Australian Department of Defense Strategic Policy Grants Program (SPGP) (award number: 2020-106-094). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding organizations. The researchers gratefully acknowledge the support.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Khaund, T., Hussain, M.N., Shaik, M., Agarwal, N. (2021). Telegram: Data Collection, Opportunities and Challenges. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., DĂaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-76228-5_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-76227-8
Online ISBN: 978-3-030-76228-5
eBook Packages: Computer ScienceComputer Science (R0)