Skip to main content

PalCom Middleware-Based Blockchain Challenges on Healthcare System

  • Chapter
  • First Online:
Convergence of Internet of Things and Blockchain Technologies

Abstract

Blockchain is an emerging technology with decentralized (Nakamoto, S., Bitcoin, A. (2008). Peer-to-peer electronic cash system. BN Publishing, La Vergne, TN, USA) and distributed technology utilized in third trusted party (TTP) for securing and solving cyberattacks. Healthcare system is a potential application having a strong impact on trustless and transparent system. The scope of PalCom middleware is to enable the GUI development and maintains the huge data values using blockchain. The PalCom directives use the commands/parameters in a limited version to access online patients. It aims to deliver a compiled working of blockchain to keep secure and safe digital relationships using private key cryptography and authentication. The challenges include fragmented patient data, medical record integrity, smart contract security, and privacy. This work includes using the Hyperledger and authentication algorithm. To solve the issues of provided data-intensive domain, i.e., healthcare system, the research shows the benefit and performance based on the cryptography algorithm and provided with the adherence to data regulations and standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. La Vergne, TN: BN Publishing.

    Google Scholar 

  2. Malina, L., Hajny, J., Dzurenda, P., & Ricci, S. (2018, July 26–28). Lightweight ring signatures for decentralized privacy- preserving transactions. In Proceedings of the 15th international joint conference on e-business and telecommunications, Porto, Portugal (pp. 526–531).

    Google Scholar 

  3. Mettler, M. (2016, September 14–17). Blockchain technology in healthcare: The revolution starts here. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany.

    Google Scholar 

  4. Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017, March 13–17). Blockchain for IoT security and privacy: The case study of a smart home. In In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA (pp. 618–623).

    Chapter  Google Scholar 

  5. Zhang, J., Xue, N., & Huang, X. A. (2016). Secure system for pervasive social network-based healthcare. IEEE Access, 4, 9239–9250.

    Article  Google Scholar 

  6. Zhu, X., & Badr, Y. (2018). Identity management systems for the internet of things: A survey towards blockchain solutions. Sensors, 18, 4215.

    Article  Google Scholar 

  7. Yue, X., Wang, H., Jin, D., Li, M., & Jiang, W. (2016). Healthcare data gateways: Found healthcare intelligence on Blockchain with novel privacy risk control. Journal of Medical Systems, 40, 218.

    Article  Google Scholar 

  8. Panarello, A., Tapas, N., Merlino, G., Longo, F., & Puliafifito, A. (2018). Blockchain and IoT integration: A systematic survey. Sensors, 18, 2575.

    Article  Google Scholar 

  9. Srivastava, G., Dwivedi, A. D., & Singh, R. (2018). PHANTOM protocol as the new crypto-democracy. In K. Saeed & W. Homenda (Eds.), Computer information systems and industrial management (pp. 499–509). Cham, Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  10. Srivastava, G., Dwivedi, A. D., & Singh, R. (2018, July 26–28). Crypto-democracy: A decentralized voting scheme using Blockchain technology. In Proceedings of the 15th international joint conference on e-business and telecommunications, Porto, Portugal (pp. 508–513).

    Google Scholar 

  11. Buccafurri, F.; Fotia, L.; Lax, G. Social signature: Signing by tweeting. In Electronic government and the information systems perspective; Andrea Kő, Francesconi, E, Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–14.

    Google Scholar 

  12. Buccafurri, F., Fotia, L., & Lax, G. (2015). A privacy-preserving e-participation framework allowing citizen opinion analysis. Electronic Government, an International Journal, 11, 185–206.

    Article  Google Scholar 

  13. Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. IEEE Access, 4, 2292–2303.

    Article  Google Scholar 

  14. Qu, C., Tao, M., & Yuan, R. A. (2018). Hypergraph-based Blockchain model and application in internet of things-enabled smart homes. Sensors, 18, 2784.

    Article  Google Scholar 

  15. Dwivedi, A. D., Srivastava, G., Dhar, S., & Singh, R. (2019). A decentralized privacy-preserving healthcare blockchain for IoT. Sensors, 19, 326. https://doi.org/10.3390/s19020326.

  16. Kumar, T., Ramani, V., Ahmad, I., Braeken, A., Harjula, E., & Ylianttila, M. Blockchain utilization in healthcare: Key requirements and challenges. In 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom). 978–1–5386-4294-8/18/$31.00 ©2018 IEEE.

    Google Scholar 

  17. Irving, G., & Holden, J. (2016). How blockchain-timestamped protocols could improve the trustworthiness of medical science. F1000Research, 5.

    Google Scholar 

  18. He, W., Liu, X., Nguyen, H., Nahrstedt, K., & Abdelzaher, T. P. D. A. (2007, May 6–12). Privacy-preserving data aggregation in wireless sensor networks. In Proceedings of the IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications, Anchorage, AK, USA (pp. 2045–2053).

    Chapter  Google Scholar 

  19. Li, N., Zhang, N., Das, S. K., & Thuraisingham, B. (2009). Privacy preservation in wireless sensor networks: A state-of-the-art survey. Ad Hoc Networks, 7, 1501–1514.

    Article  Google Scholar 

  20. Li, M., Yu, S., Ren, K., & Lou, W. (2010). Securing personal health records in cloud computing: Patient- centric and fine-grained data access control in multi-owner settings. In S. Jajodia & J. Zhou (Eds.), Security and Privacy in Communication Networks (pp. 89–106). Berlin/Heidelberg, Germany: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  21. Mandl, K. D., Markwell, D., MacDonald, R., Szolovits, P., & Kohane, I. S. (2001). Public standards and patients’ control: How to keep electronic medical records accessible but private. BMJ, 322, 283–287.

    Article  Google Scholar 

  22. Wu, J., Dong, M., Ota, K., Li, J., & Guan, Z. (2018). Big data analysis-based secure cluster management for optimized control plane in software-defined networks. IEEE Transactions on Network and Service Management, 15, 27–38.

    Article  Google Scholar 

  23. Guo, L., Dong, M., Ota, K., Li, Q., Ye, T., Wu, J., & Li, J. (2017). A secure mechanism for big data collection in large scale internet of vehicle. IEEE Internet of Things Journal, 4, 601–610.

    Article  Google Scholar 

  24. Wu, J., Ota, K., Dong, M., & Li, C. A. (2016). Hierarchical security framework for defending against sophisticated attacks on wireless sensor networks in smart cities. IEEE Access, 4, 416–424.

    Article  Google Scholar 

  25. Dwivedi, A. D., Morawiecki, P., & Wójtowicz, S. (2018). Finding differential paths in ARX ciphers through nested Monte-Carlo search. International Journal of Electronics and Telecommunications, 64, 147–150.

    Google Scholar 

  26. Dwivedi, A. D., Morawiecki, P., Singh, R., & Dhar, S. (2018). Differential-linear and related key cryptanalysis of round-reduced scream. Information Processing Letters, 136, 5–8.

    Article  MathSciNet  Google Scholar 

  27. Dwivedi, A. D., & Srivastava, G. (2018). Differential cryptanalysis of round-reduced LEA. IEEE Access.

    Google Scholar 

  28. Dhar Dwivedi, A., Morawiecki, P., & Wójtowicz, S. (2017, July 24–26). Differential and Rotational Cryptanalysis of Round-reduced MORUS. In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications, Madrid, Spain (pp. 275–284).

    Chapter  Google Scholar 

  29. Dwivedi, A. D., Morawiecki, P. (2018). Differential Cryptanalysis in ARX Ciphers, Application to SPECK. Cryptology ePrint Archive: Report 2018/899. Retrieved January 9, 2019, from https://eprint.iacr.org/2018/899

  30. Griggs, K. N., Ossipova, O., & Hayajneh, T. (2018). Healthcare blockchain system using smart contracts for secure automated remote patient monitoring. Journal of Medical Systems, 42(130). https://doi.org/10.1007/s10916-018-0982-x. , Corpus ID: 46969017.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, S.S., Rajasekar, V., Goundar, S. (2022). PalCom Middleware-Based Blockchain Challenges on Healthcare System. In: Gururaj, H.L., Ravi Kumar, V., Goundar, S., Elngar, A.A., Swathi, B.H. (eds) Convergence of Internet of Things and Blockchain Technologies. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-76216-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76216-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76215-5

  • Online ISBN: 978-3-030-76216-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics