Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 258 Accesses

Abstract

This chapter offers the main general conclusions of this dissertation. The contribution of glucose to the dielectric losses of the medium is highlighted. Also, the feasibility of microwave resonators for the pursued purpose is reviewed, and the convenience of using the unloaded quality factor as sensing parameter is asserted. The interference of other components and parameters in the response of the sensors is pointed as well, and the possible enhancements easily attainable in the near future are remarked. Finally, the future scope foreseen is depicted, mainly focused upon improving the sensors, tracking broader information, developing realistic computational models, considering multi-technology approaches and involving machine learning techniques.

Everything is theoretically impossible, until it is done.

Robert A. Heinlein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juan CG, Bronchalo E, Torregrosa G, Ávila E, García N, Sabater-Navarro JM (2017) Dielectric characterization of water glucose solutions using a transmission/reflection line method. Biomed Signal Process Control 31(1):139–147

    Article  Google Scholar 

  2. Juan CG, Bronchalo E, Potelon B, Quendo C, Ávila-Navarro E, Sabater-Navarro JM (2019) Concentration measurement of microliter-volume water–glucose solutions using Q factor of microwave sensors. IEEE Trans Instrum Meas 68(7):2621–2634

    Article  Google Scholar 

  3. Juan CG, Bronchalo E, Potelon B, Quendo C, Sabater-Navarro JM (2019) Glucose concentration measurement in human blood plasma solutions with microwave sensors. Sensors 19(17):3779

    Article  Google Scholar 

  4. Sharma NK, Singh S (2012) Designing a non invasive blood glucose measurement sensor. In: Proceedings of the IEEE 7th international conference on industrial and information systems (ICIIS), Chennai, India

    Google Scholar 

  5. García H, Juan CG, Ávila-Navarro E, Bronchalo E, Sabater-Navarro JM (2019) Portable device based on microwave resonator for noninvasive blood glucose monitoring. In: Proceedings of the 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin, Germany, pp 1115–1118

    Google Scholar 

  6. Juan CG, García H, Ávila-Navarro E, Bronchalo E, Galiano V, Moreno O, Orozco D, Sabater-Navarro JM (2019) Feasibility study of portable microwave microstrip open-loop resonator for noninvasive blood glucose level sensing: proof of concept. Med Biol Eng Comput 57(11):2389–2405. Available: https://rdcu.be/bP1T6. Accessed 1 Sept 2019

  7. Barman I, Kong C-R, Dingari NC, Dasari RR, Feld MS (2010) Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose. Anal Chem 82(23):9719–9726

    Article  Google Scholar 

  8. Rossetti P, Bondia J, Vehí J, Fanelli CG (2010) Estimating plasma glucose from interstitial glucose: The issue of calibration algorithms in commercial continuous glucose monitoring devices. Sensors 10(12):10936–10952

    Article  Google Scholar 

  9. Juan CG, Potelon B, Quendo C, Bronchalo E, Sabater-Navarro JM (2019) Highly-sensitive glucose concentration sensor exploiting inter-resonators couplings. In: Proceedings of the 49th European microwave conference (EuMC), Paris, France, pp 662–665

    Google Scholar 

  10. Chevalier A, Potelon B, Benedicto J, Quendo C, Roquefort P, Aubry T, Simon S (2019) Caractérisation électromagnétique hyperfréquence de marqueur physiologique : application au Lactate de sodium. In: XXIèmes Journées Nationales Microondes, Caen, France

    Google Scholar 

  11. Koutsoupidou M, Cano-Garcia H, Pricci RL, Saha SC, Rana S, Ancu O, Draicchio F, Mackenzie R, Kosmas P, Kallos E (2019) Dielectric permittivity of human blood of different lactate levels measured at millimeter waves. In: Proceedings of the 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin, Germany, pp 1183–1186

    Google Scholar 

  12. Choi H, Naylon J, Luzio S, Beutler J, Birchall J, Martin C, Porch A (2015) Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans Microw Theory Tech 63(10):3016–3025

    Article  Google Scholar 

  13. Costanzo S, Cioffi V, Raffo A (2018) Complex permittivity effect on the performances of non-invasive microwave blood glucose sensing: enhanced model and preliminary results. In: Rocha A, Adeli H, Reis LP, Costanzo S (eds) Proceedings on WorldCIST'18 2018: trends and advances in information systems and technologies, Naples, Italy, pp 1505–1511

    Google Scholar 

  14. Lunze K, Singh T, Walter M, Brendel MD, Leonhardt S (2013) Blood glucose control algorithms for type 1 diabetic patients: a methodological review. Biomed Signal Process Control 8(2):107–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Juan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juan, C.G. (2021). Conclusions. In: Designing Microwave Sensors for Glucose Concentration Detection in Aqueous and Biological Solutions . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-76179-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76179-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76178-3

  • Online ISBN: 978-3-030-76179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics