Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 278 Accesses

Abstract

This chapter introduces a thorough proof of concept of the developed technology for real NIBGM. A portable version of one of the proposed sensors is implemented for evaluating its performance as NIBGM device in real application conditions. A large study with a considerable number of individuals in a multicenter clinical scenario is presented. As a result, experimental evidence of the potential of this technology is given. Also, its limitations and required improvement aspects are identified.

A fact is a simple statement that everyone believes. It is innocent, unless found guilty.

A hypothesis is a novel suggestion that no one wants to believe. It is guilty, until found effective.

Edward Teller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. García H, Juan CG, Ávila-Navarro E, Bronchalo E, Sabater-Navarro JM (2019) Portable device based on microwave resonator for noninvasive blood glucose monitoring. In: Proceedings of the 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin, Germany, pp 1115–1118

    Google Scholar 

  2. Juan CG, García H, Ávila-Navarro E, Bronchalo E, Galiano V, Moreno O, Orozco Sabater-Navarro JM (2019) Feasibility study of portable microwave microstrip open-loop resonator for noninvasive blood glucose level sensing: proof of concept. Med Biol Eng Comput 57(11):2389–2405. Available: https://rdcu.be/bP1T6. Accessed 1 Sept 2019

  3. Juan CG, Bronchalo E, Potelon B, Quendo C, Ávila-Navarro E, Sabater-Navarro JM (2019) Concentration measurement of microliter-volume water–glucose solutions using Q factor of microwave sensors. IEEE Trans Instrum Meas 68(7):2621–2634

    Article  Google Scholar 

  4. Juan CG, Bronchalo E, Potelon B, Quendo C, Sabater-Navarro JM (2019) Glucose concentration measurement in human blood plasma solutions with microwave sensors. Sensors 19(17):3779

    Article  Google Scholar 

  5. Hayashi Y, Livshits L, Caduff A, Feldman Y (2003) Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J Phys D Appl Phys 36(4):369–374

    Article  Google Scholar 

  6. Vorst V, Rosen A, Kotsuka Y (2006) RF/microwave interaction with biological tissues. Wiley, Hoboken

    Google Scholar 

  7. Orna MV, John S (1989) Electrochemistry, past and present. American Chemical Society, Columbus

    Google Scholar 

  8. Wahl D (2005) A short history of electrochemistry. Galvanotechnik 96(8):1820–1828

    Google Scholar 

  9. Reilly JP, Geddes LA, Polk C (2000) Bioelectricity. In: Dorf RC (ed) The electrical engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  10. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 177:500–544

    Article  Google Scholar 

  11. Kotnik T, Miklavčič D (2000) Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans Biomed Eng 47(8):1074–1081

    Article  Google Scholar 

  12. Movahed S, Li D (2012) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369(1):442–452

    Article  Google Scholar 

  13. Valdmanis J (2012) The modelling of cell membrane electrodynamics. In: Dekhtyar Y, Katashev A, Lancere L (eds) International symposium on biomedical engineering and medical physics, 2012, Riga, Latvia. IFMBE Proceedings, vol. 38. Springer, Berlin, Germany, pp 90–92

    Google Scholar 

  14. Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fiber of xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171:302–315

    Article  Google Scholar 

  15. Ambrose EJ, Forrester JA (1968) Electrical phenomena associated with cell movements. Symp Soc Exp Biol 22:237–248

    Google Scholar 

  16. Szabo G (1977) Electrical characteristics of ion transport in lipid bilayer membranes. Ann N Y Acad Sci 303:266–278

    Google Scholar 

  17. Norian KH (1995) Electrical effect of neurotoxin on K+ channel in biological membrane. J Mater Sci Lett 14(14):985–987

    Article  Google Scholar 

  18. Lin JC, Bernardi P (2006) Computational methods for predicting field intity and temperature change. In: Barnes FS, Greenebaum B (eds) Handbook of biological effects of electromagnetic fields: bioengineering and biophysical aspects of electromagnetic fields, 3rd edn. Taylor & Francis Group, LLC, Boca Raton, FL, USA, pp 293–380

    Google Scholar 

  19. Prodan E, Prodan C, Miller JH Jr (2008) The dielectric response of spherical live cells in suspension: an analytic solution. Biophys J 95(9):4174–4182

    Article  Google Scholar 

  20. Biasio D, Cametti C (2010) d-glucose-induced alterations in the electrical parameters of human erythrocyte cell membrane. Bioelectrochemistry 77(2):151–157

    Google Scholar 

  21. Livshits L, Caduff A, Talary MS, Feldman Y (2007) Dielectric response of biconcave erythrocyte membranes to D- and L-glucose. J Phys D Appl Phys 40(1):15–19

    Article  Google Scholar 

  22. Desouky OS (2009) Rheological and electrical behavior or erythrocytes in patients with diabetes mellitus. Romanian J Biophys 19(4):239–250

    Google Scholar 

  23. Park J-H, Kim C-S, Choi B-C, Ham K-Y (2003) The correlation of the complex dielectric constant and blood glucose at low frequency. Biosens Bioelectron 19(4):321–324

    Article  Google Scholar 

  24. Sbrignadello TS, Barison S, Conti C, Pacini G (2007) Impedance spectroscopy of solutions at physiological glucose concentrations. Biophys Chem 129(2–3):235–241

    Google Scholar 

  25. Yoon G (2011) Dielectric properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modeling. Biosens Bioelectron 26(5):2347–2353

    Article  Google Scholar 

  26. Caduff EH, Feldman Y, Ali Z, Heinemann L (2003) First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system. Biosens Bioelectron 19(3):209–217

    Google Scholar 

  27. Caduff FD, Talary M, Stalder G, Heinemann L, Feldman Y (2006) Non-invasive glucose monitoring in patients with diabetes: A novel system based on impedance spectroscopy. Biosens Bioelectron 22(5):598–604

    Google Scholar 

  28. Jean BR, Green EC, McClung MJ (2008) A microwave frequency sensor for non-invasive blood-glucose measurement. In: Proceedings of the 2008 IEEE Sensors Applications Symposium (SAS), Atlanta, GA, USA

    Google Scholar 

  29. Freer, Venkataraman J (2010) Feasibility study for non-invasive blood glucose monitoring. In: Proceedings of the 2010 IEEE antennas and propagation society international symposium, Toronto, ON, Canada

    Google Scholar 

  30. Venkataraman J, Freer B (2011) Feasibility of non-invasive blood glucose monitoring: in-vitro measurements and phantom models. In: Proceedings of the 2011 IEEE international symposium on antennas and propagation (APSURSI), Spokane, WA, USA

    Google Scholar 

  31. Choi H, Luzio S, Beutler J, Porch A (2017) Microwave noninvasive blood glucose monitoring sensor: human clinical trial results. In: Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, pp 876–879

    Google Scholar 

  32. Calhoun P, Johnson TK, Hughes J, Price D, Balo AK (2018) Resistance to acetaminophen interference in a novel continuous glucose monitoring system. J Diabetes Sci Technol 12(2):393–396

    Article  Google Scholar 

  33. Kumari S, Raghavan S, Biological effects of microwave. In: Proceedings of the 2014 international conference on information communication and embedded systems (ICICES), Chennai, India

    Google Scholar 

  34. Bantle JP, Thomas W (1997) Glucose measurement in patients with diabetes mellitus with dermal interstitial fluid. J Lab Clin Med 130(4):436–441

    Article  Google Scholar 

  35. Thennadil SN, Rennert JL, Wenzel BJ, Hazen KH, Ruchti TL, Block MB (2001) Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels. Diabetes Technol Ther 3(3):357–365

    Article  Google Scholar 

  36. Harman-Boehm AG, Raykhman AM, Zahn JD, Naidis E, Mayzel Y (2009) Noninvasive glucose monitoring: a novel approach. J Diabet Sci Technol 3(2):253

    Google Scholar 

  37. Wientjes KJC, Schoonen AJM (2001) Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers. Int J Artif Organs 24(12):884–889

    Article  Google Scholar 

  38. Stout PJ, Peled N, Erickson BJ, Hilgers ME, Racchini JR, Hoegh TB (2001) Comparison of glucose levels in dermal interstitial fluid and finger capillary blood. Diabetes Technol Ther 3(1):81–90

    Article  Google Scholar 

  39. Reiterer F, Polterauer P, Freckmann G, del Re L (2016) Identification of CGM time delays and implications for BG control in T1DM. In: IFMBE Proceedings on XIV mediterranean conference on medical and biological engineering and computing 2016 (MEDICON), Paphos, Cyprus, pp 190–195

    Google Scholar 

  40. Gebhart S, Faupel M, Fowler R, Kapsner C, Lincoln D, McGee V, Pasqua J, Steed L, Wangsness M, Xu F, Vanstory M (2003) Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum. Diabetes Technol Ther 5(2):159–166

    Article  Google Scholar 

  41. Breton M, Kovatchev B (2008) Analysis, modeling, and simulation of the accuracy of continuous glucose sensors. J Diabetes Sci Technol 2(5):853–862

    Article  Google Scholar 

  42. Sinha M, McKeon KM, Parker S, Goergen LG, Zheng H, El-Khatib FH, Russell SJ (2017) A comparison of time delay in three continuous glucose monitors for adolescents and adults. J Diabetes Sci Technol 11(6):1132–1137

    Article  Google Scholar 

  43. Groenendaal W, Schmidt KA, von Basum G, van Riel NAW, Hilbers PAJ (2008) Modeling glucose and water dynamics in human skin. Diabetes Technol Ther 10(4):283–293

    Article  Google Scholar 

  44. Barman C-RK, Dingari NC, Dasari RR, Feld MS (2010) Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose. Anal Chem 82(23):9719–9726

    Google Scholar 

  45. Shi T, Li D, Li G, Zhang Y, Xu K, Lu L (2016) Modeling and measurement of correlation between blood and interstitial glucose changes. J Diabetes Res 2016:4596316

    Article  Google Scholar 

  46. Huang Y-B, Fang J-Y, Wu P-C, Chen T-H, Tsai M-J, Tsai Y-H (2003) Noninvasive glucose monitoring by back diffusion via skin: Chemical and physical enhancements. Biol Pharm Bull 26(7):983–987

    Article  Google Scholar 

  47. Siegmund T, Heinemann L, Kolassa R, Thomas A (2017) Discrepancies between blood glucose and interstitial glucose—technological artifacts or physiology: implications for selection of the appropriate therapeutic target. J Diabetes Sci Technol 11(4):766–772

    Article  Google Scholar 

  48. Cobelli MS, Man CD, Basu A, Basu R (2016) Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: Insight from an in silico study. Diabet Technol Ther 18(8):505–511

    Google Scholar 

  49. Duck FA (1990) Tissue composition. In: Duck FA (ed) Physical properties of tissues: a comprehensive reference book. Academic Press, London, pp 319–328

    Chapter  Google Scholar 

  50. Rodboard (2016) Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol Ther 18(S2):S2-3–S2-3

    Google Scholar 

  51. Garg SK, Akturk HK (2017) The future of continuous glucose monitoring. Diabetes Technol Ther 19(S3):S-1–S-2

    Google Scholar 

  52. Graham C (2017) Continuous glucose monitoring and global reimbursement: an update. Diabetes Technol Ther 19(S3):S-60–S-66

    Google Scholar 

  53. Turgul V, Kale I (2018) Sensitivity of non-invasive RF/microwave glucose sensors and fundamental factors and challenges affecting measurement accuracy. In: Proceedings of the 2018 IEEE international instrumentation and measurement technology conference (I2MTC), Houston, TX, USA

    Google Scholar 

  54. Faccioli S, Del Favero S, Visentin R, Bonfanti R, Iafusco D, Rabbone I, Marigliano M, Schiaffini R, Bruttomesso D, Cobelli C (2017) Accuracy of a CGM Sensor in pediatric subjects with type 1 diabetes. Comparison of three insertion sites: arm, abdomen, and gluteus. J Diabetes Sci Technol 11(6):1147–1154

    Article  Google Scholar 

  55. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41(11):2251–2269

    Article  Google Scholar 

  56. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41(11):2271–2293

    Article  Google Scholar 

  57. Pozar DM (1998) Microwave filters. In: Pozar DM (ed) Microwave engineering, 2nd edn. Wiley, New York, pp 422–498

    Google Scholar 

  58. Hong J-S (2011) Microstrip filters for RF/microwave applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  59. Olimex (2017) Olimex PIC32-PINGUINO-OTG. Available: https://www.olimex.com/Products/Duino/PIC32/PIC32-PINGUINO-OTG/open-source-hardware. Accessed 7 July 2019

  60. Potelon B, Quendo C, Carré J-L, Chevalier A, Person C, Queffelec P (2014) Electromagnetic signature of glucose in aqueous solutions and human blood. In: Proceedings of MEMSWAVE Conference, La Rochelle, France, pp 4–7

    Google Scholar 

  61. Costanzo S, Cioffi V, Raffo A (2018) Complex permittivity effect on the performances of non-invasive microwave blood glucose sensing: Enhanced model and preliminary results. In: Rocha A, Adeli H, Reis LP, Costanzo S (eds) Proceedings on WorldCIST'18 2018: trends and advances in information systems and technologies, Naples, Italy, pp 1505

    Google Scholar 

  62. Sharma NK, Singh S (2012) Designing a non invasive blood glucose measurement sensor. In: Proceedings of the IEEE 7th international conference on industrial and information systems (ICIIS), Chennai, India

    Google Scholar 

  63. Rossetti P, Bondia J, Vehí J, Fanelli CG (2010) Estimating plasma glucose from interstitial glucose: the issue of calibration algorithms in commercial continuous glucose monitoring devices. Sensors 10(12):10936–10952

    Article  Google Scholar 

  64. Gal IH, Drexler A, Naidis E, Mayzel Y, Goldstein N, Horman K (2014) Calibration schemes of a truly non-invasive glucose monitor for variety of diabetics. In: Proceedings of the 13th annual diabetes technology meeting, San Francisco, CA, USA

    Google Scholar 

  65. Grant JP, Clarke RN, Symm GT, Spyrou NM (1988) In vivo dielectric properties of human skin from 50 MHz to 2.0 GHz. Phys Med Biol 33(5):607–612

    Article  Google Scholar 

  66. Turgul V, Kale I (2016) A novel pressure sensing circuit for non-invasive RF/microwave blood glucose sensors. In: Proceedings of the 16th mediterranean microwave symposium (MMS), Abu Dhabi, United Arab Emirates

    Google Scholar 

  67. Choi H, Naylon J, Luzio S, Beutler J, Birchall J, Martin C, Porch A (2015) Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans Microw Theory Tech 63(10):3016–3025

    Article  Google Scholar 

  68. Ibrani M, Ahma L, Hamiti E (2012) The age-dependence of microwave dielectric parameters of biological tissues. In: Costanzo S (ed) Microwave materials characterization. InTech, Rijeka, Croatia, pp 139–158

    Google Scholar 

  69. Turgul V, Kale I (2017) Simulating the effects of skin thickness and fingerprints to highlight problems with non-invasive RF blood glucose sensing from fingertips. IEEE Sens J 17(22):7553–7560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Juan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juan, C.G. (2021). Microwave Resonator for NIBGM: Proof of Concept. In: Designing Microwave Sensors for Glucose Concentration Detection in Aqueous and Biological Solutions . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-76179-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76179-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76178-3

  • Online ISBN: 978-3-030-76179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics