Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 279 Accesses

Abstract

This chapter studies the development of a transmission/reflection line method for the dielectric characterization of liquids. Water–glucose solutions at several physiological concentrations are measured and characterized with the proposed method. The dielectric dispersion of these solutions is described from the measurements, and the parameters of the Debye model for each solution are given, as well as their Cole–Cole plots. These results are discussed and conclusions are offered, oriented to the development of sensors aimed to track the observed behaviors.

Nature composes some of her loveliest poems for the microscope and the telescope.

Theodore Roszak

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juan CG, Bronchalo E, Torregrosa G, Ávila E, García N, Sabater-Navarro JM (2017) Dielectric characterization of water glucose solutions using a transmission/reflection line method. Biomed Signal Process Control 31(1):139–147

    Article  Google Scholar 

  2. Park J-H, Kim C-S, Choi B-C, Ham K-Y (2003) The correlation of the complex dielectric constant and blood glucose at low frequency. Biosens Bioelectron 19(4):321–324

    Article  Google Scholar 

  3. Vander Vorst A, Rosen A, Kotsuka Y (2006) RF/microwave interaction with biological tissues. Wiley, Hoboken

    Google Scholar 

  4. Kaatze U (2015) Dielectric relaxation of water. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, UK, pp 189–227

    Chapter  Google Scholar 

  5. Caduff A, Talary M (2015) Glucose detection from skin dielectric measurements. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, pp 388–412

    Chapter  Google Scholar 

  6. Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci 99(6):3370–3375

    Article  Google Scholar 

  7. Jhun BS, Lee H, Jin Z-G, Yoon Y (2013) Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E. PLoS ONE 8(4):e60810

    Article  Google Scholar 

  8. Asami K (2015) Radiofrequency dielectric properties of cell suspensions. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, pp 340–362

    Chapter  Google Scholar 

  9. Coelho R (1979) Physiscs of dielectrics. Elsevier, Amsterdam

    Google Scholar 

  10. Raicu V (2015) Theory of suspensions of particles in homogeneous fields. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, UK, pp 60–84

    Chapter  Google Scholar 

  11. Hayashi Y, Livshits L, Caduff A, Feldman Y (2003) Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes. J Phys D Appl Phys 36(4):369–374

    Article  Google Scholar 

  12. Livshits L, Caduff A, Talary MS, Feldman Y (2007) Dielectric response of biconcave erythrocyte membranes to D- and L-glucose. J Phys D Appl Phys 40(1):15–19

    Article  Google Scholar 

  13. Jaspard F, Nadi M (2001) Open ended coaxial line for electrical characterization of human blood. In: Proceedings of the 23rd annual international conference of the IEEE engineering in medicine and biology society (EMBC), Istanbul, Turkey

    Google Scholar 

  14. Topsakal E, Karacolak T, Moreland EC (2011) Glucose-dependent dielectric properties of blood plasma. In: Proceedings of the XXXth URSI general assembly and scientific symposium, Istanbul, Turkey

    Google Scholar 

  15. Karacolak T, Moreland EC, Topsakal E (2013) Cole-Cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring. Microw Opt Technol Lett 55(5):1160–1164

    Article  Google Scholar 

  16. Potelon B, Quendo C, Carré J-L, Chevalier A, Person C, Queffelec P (2014) Electromagnetic signature of glucose in aqueous solutions and human blood. In: Proceedings of MEMSWAVE conference, La Rochelle, France, pp 4–7

    Google Scholar 

  17. Duhamel F, Huynen I, Vander Vorst A (1997) Measurements of complex permittivity of biological and organic liquids up to 110 GHz. In: Proceedings of the 1997 IEEE MTT-S international microwave symposium digest, Denver, CO, USA

    Google Scholar 

  18. Costanzo S, Cioffi V, Raffo A (2018) Complex permittivity effect on the performances of non-invasive microwave blood glucose sensing: enhanced model and preliminary results. In: Rocha A, Adeli H, Reis LP, Costanzo S (eds) Proceedings on WorldCIST'18 2018: trends and advances in information systems and technologies, Naples, Italy, pp 1505–1511

    Google Scholar 

  19. Tura A, Sbrignadello S, Barison S, Conti C, Pacini G (2007) Impedance spectroscopy of solutions at physiological glucose concentrations. Biophys Chem 129(2–3):235–241

    Article  Google Scholar 

  20. Yoon G (2011) Dielectric properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modeling. Biosens Bioelectron 26(5):2347–2353

    Article  Google Scholar 

  21. Ben Ishai P, Tripathi SR, Kawase K, Puzenko A, Feldman Y (2015) What is the primary mover of water dynamics? Phys Chem Chem Phys 17(23):15428–15434

    Google Scholar 

  22. Laage D, Hynes JT (2006) A molecular jump mechanism of water reorientation. Science 311:832–835

    Article  Google Scholar 

  23. Laage D, Stirnemann G, Sterpone F, Rey R, Hynes JT (2011) Reorientation and allied dynamics in water and aqueous solutions. Annu Rev Phys Chem 62(1):395–416

    Article  Google Scholar 

  24. Bagchi B (2012) From anomalies in neat liquid to structure, dynamics and function in the biological world. Chem Phys Lett 529:1–9

    Article  Google Scholar 

  25. Chekalin NV, Shakhparonov MI (1968) The mechanism of dielectric relaxation in water. J Struct Chem 9(5):789–790

    Article  Google Scholar 

  26. Agmon N (1996) Tetrahedral displacement: the molecular mechanism behind the debye relaxation in water. J Phys Chem 100(3):1072–1080

    Article  Google Scholar 

  27. Nikawa Y, Michiyama T (2007) Blood-sugar monitoring by reflection of millimeter wave. In: Proceedings of the 2007 Asia-Pacific microwave conference (APMC), Bangkok, Thailand

    Google Scholar 

  28. Hofmann M, Fischer G, Weigel R, Kissinger D (2013) Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans Microw Theory Tech 61(5):2195–2204

    Article  Google Scholar 

  29. Ahmed S, Pasti A, Fernández-Terán RJ, Ciardi G, Shalit A, Hamm P (2018) Aqueous solvation from the water perspective. J Chem Phys 148(23):234505

    Article  Google Scholar 

  30. Sasaki K, Popov I, Feldman Y (2019) Water in the hydrated protein powders: dynamic and structure. J Chem Phys 150(20):204504

    Article  Google Scholar 

  31. Banerjee P, Bagchi B (2019) Ions’ motion in water. J Chem Phys 150(19):190901

    Article  Google Scholar 

  32. Shenhui J, Ding D, Quanxing J (2003) Measurement of electromagnetic properties of materials using transmission/reflection method in coaxial line. In: Proceedings of the Asia-Pacific conference on environmental electromagnetics, 2003 (CEEM'2003), Hangzhou, China

    Google Scholar 

  33. Sheen J (2009) Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques. Meas Sci Technol 20(4):042001

    Article  Google Scholar 

  34. Kaatze U (2007) Reference liquids for the calibration of dielectric sensors and measurement instruments. Meas Sci Technol 18(4):967–976

    Article  Google Scholar 

  35. Kaatze U (1989) Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data 34(4):371–374

    Article  Google Scholar 

  36. Collin RE (1990) Field theory of guided waves, 2nd edn. Wiley-IEEE Press, New York

    Book  Google Scholar 

  37. Collin RE (2001) Foundations for microwave engineering, 2nd edn. Wiley-IEEE Press, New York

    Book  Google Scholar 

  38. Pozar DM (1998) Microwave network analysis. In: Pozar DM (ed) Microwave engineering, 2nd edn. Wiley, Hoboken, pp 182–250

    Google Scholar 

  39. Kaatze U, Feldman Y, Ben Ishai P, Greenbaum A, Raicu V (2015) Experimental methods. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, pp 109–139

    Google Scholar 

  40. Ellison WJ (2007) Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and temperature range 0–100 ºC. J Phys Chem Ref Data 36(1):1–18

    Google Scholar 

  41. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans Instrum Measur im-19(4):377–382

    Google Scholar 

  42. Weir W (1974) Automatic measurement of complex dielectric constant and permeabihty at microwave frequencies. Proc IEEE 62(1):33–36

    Article  Google Scholar 

  43. Baker-Jarvis J (1990) Transmission/reflection and short-circuit line permittivity measurements. National Institute of Standards and Technology (NIST), Boulder

    Google Scholar 

  44. Baker-Jarvis J, Janezik MD, Jr Grosvenor JH, Geyer RG (1992) Transmission/reflection and short-circuit line methods for measuring permittivity and permeability. National Institute of Standards and Technology (NIST), Boulder

    Google Scholar 

  45. Baker-Jarvis J, Janezic MD, Riddle BF, Johnk RT, Kabos P, Holloway CL, Geyer RG, Grosvenor CA (2005) Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials, and negative-index materials. National Institute of Standards and Technology, Boulder

    Google Scholar 

  46. Costa F, Borgese M, Degiorgi D, Monorchio A (2017) Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices. Electronics 6(4):95

    Article  Google Scholar 

  47. Arslanagić S, Hansen TV, Mortensen NA, Gregersen AH, Sigmund O, Ziolkowski RW, Breinbjerg O (2013) A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Anten Propag Mag 55(2):91–106

    Google Scholar 

  48. Powles JG (1993) Cole-Cole plots as they should be. J Mol Liq 56:35–47

    Article  Google Scholar 

  49. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(2):341–451

    Article  Google Scholar 

  50. Fang PH (1965) Cole-Cole diagram and the distribution of relaxation times. J Chem Phys 42(10):3411–3413

    Article  MathSciNet  Google Scholar 

  51. Fossion M, Huynen I, Vanhoenacker D, Vander Vorst A (1992) A new and simple calibration method for measuring planar lines parameters up to 40 GHz. In: Proceedings of the 22nd European Microwave Conference (EuMC), Helsinki, Finland, pp 180–185

    Google Scholar 

  52. Gregory AP, Clarke RN (2012) Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5 GHz. National Physical Laboratory, Teddington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Juan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juan, C.G. (2021). Dielectric Characterization of Water–Glucose Solutions. In: Designing Microwave Sensors for Glucose Concentration Detection in Aqueous and Biological Solutions . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-76179-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76179-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76178-3

  • Online ISBN: 978-3-030-76179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics