Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 273 Accesses

Abstract

This chapter constitutes the introduction to this doctoral thesis and to the framework of the work carried out. It gives a brief approach to the contents of this document, and it also describes the main motivation to conduct this research. The objectives and contributions are summarized, and the structure of this document is outlined. Finally, the framework of this doctoral thesis is described, and the publications supporting this dissertation are shown.

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60(6):692–718

    Article  Google Scholar 

  2. Watanabe S, Taki M, Nojima T, Fujiwara O (1996) Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio. IEEE Trans Microw Theory Tech 44(10):1874–1883

    Article  Google Scholar 

  3. Hagness SC, Taflove A, Bridges JE (1999) Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element. IEEE Trans Antennas Propag 47(5):783–791

    Article  Google Scholar 

  4. Gibbins D, Klemm M, Craddock IJ, Leendertz JA, Preece A, Benjamin R (2010) A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection. IEEE Trans Antennas Propag 58(3):665–674

    Article  Google Scholar 

  5. Wang X, Bauer DR, Witte R, Xin H (2012) Microwave-induced thermoacoustic imaging model for potential breast cancer detection. IEEE Trans Biomed Eng 59(10):2782–2791

    Article  Google Scholar 

  6. Bucci OM, Crocco L, Scapaticci R (2015) On the optimal measurement configuration for magnetic nanoparticles enhanced breast cancer microwave imaging. IEEE Trans Biomed Eng 62(2):407–414

    Article  Google Scholar 

  7. Kwon S, Lee S (2016) Recent advances in microwave imaging for breast cancer detection. Int J Biomed Imaging 2016:5054912

    Article  Google Scholar 

  8. Mahmud MZ, Islam MT, Misran N, Almutairi AF, Cho M (2018) Ultra-wideband (UWB) antenna sensor based microwave breast imaging: a review. Sensors 18(9):2951

    Article  Google Scholar 

  9. Fear EC, Hagness SC, Meaney PM, Okoniewski M, Stuchly MA (2002) Enhancing breast tumor detection with near-field imaging. IEEE Microwave Mag 3(1):48–56

    Article  Google Scholar 

  10. Grenier K, Dubuc D, Chen T, Artis F, Chretiennot T, Poupot M, Fournié J-J (2013) Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations. IEEE Trans Microw Theory Tech 61(5):2023–2030

    Article  Google Scholar 

  11. Chen T, Dubuc D, Poupot M, Fournié J-J, Grenier K (2013) Broadband discrimination of living and dead lymphoma cells with a microwave interdigitated capacitor. In: Proceedings of the 2013 IEEE topical conference on biomedical wireless technologies, networks, and sensing systems (BioWireleSS), Austin, TX, pp 64–66

    Google Scholar 

  12. Gubin AI, Barannik AA, Cherpak NT, Vitusevich S, Offenhaeusser A, Klein N (2011) Whispering-gallery mode resonator technique for characterization of small volumes of biochemical liquids in microfluidic channel. In: Proceedings of the 41st European microwave conference (EuMC), Manchester, pp 615–618

    Google Scholar 

  13. Shaforost EN, Klein N, Vitusevich SA, Barannik AA, Cherpak NT (2009) High sensitivity microwave characterization of organic molecule solutions of nanoliter volume. Appl Phys Lett 94(11):112901

    Article  Google Scholar 

  14. Guha S, Warsinke A, Tientcheu CM, Schmalz K, Meliani C, Wenger C (2015) Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor. Analyst 140(9):3019–3027

    Article  Google Scholar 

  15. Rowe DJ, Porch A, Barrow DA, Allender CJ (2012) Microfluidic device for compositional analysis of solvent systems at microwave frequencies. Sens Actuators B Chem 169:213–221

    Article  Google Scholar 

  16. Nikolic-Jaric M, Romanuik SF, Ferrier GA, Bridges GE, Butler M, Sunley K, Thomson DJ, Freeman MR (2009) Microwave frequency sensor for detection of biological cells in microfluidic channels. Biomicrofluidics 3(3):034103

    Article  Google Scholar 

  17. Entesari K, Helmy AA, Sekar V (2013) A review of frequency synthesizer-based microwave chemical sensors for dielectric detection of organic liquids. In: Proceedings of the 2013 IEEE annual conference on wireless and microwave technology (WAMICON), Orlando, FL

    Google Scholar 

  18. Chien J-C, Anwar M, Yeh E-C, Lee LP, Niknejad AM (2014) A 6.5/17.5-GHz dual-channel interferometer-based capacitive sensor in 65-nm CMOS for high-speed flow cytometry. In: Proceedings of the 2014 IEEE MTT-S international microwave symposium (IMS), Tampa, FL

    Google Scholar 

  19. Guha S, Jamal FI, Wenger C (2017) A review on passive and integrated near-field microwave biosensors. Biosensors 7(4):42

    Article  Google Scholar 

  20. Mata-Contreras J, Su L, Martín F (2017) Microwave sensors based on symmetry properties and metamaterial concepts: a review of some recent developments (invited paper). In: Proceedings of the IEEE 18th wireless and microwave technology conference (WAMICON), Cocoa Beach, FL

    Google Scholar 

  21. Naqui J, Martín F (2015) Microwave sensors based on symmetry properties of resonator-loaded transmission lines. J Sens 2015:741853

    Article  Google Scholar 

  22. Su L, Mata-Contreras J, Vélez P, Martín F (2017) A review of sensing strategies for microwave sensors based on metamaterial-inspired resonators: dielectric characterization, displacement, and angular velocity measurements for health diagnosis, telecommunication, and space applications. Int J Antennas Propag 2017:5619728

    Article  Google Scholar 

  23. Bahar AAM, Zakaria Z, Isa AAM, Ruslan E, Alahnomi RA (2015) A review of characterization techniques for materials’ properties measurement using microwave resonant sensor. J Telecommun Electron Comput Eng 7(2):1–6

    Google Scholar 

  24. Sekar V, Torke WJ, Palermo S, Entesari K (2012) A self-sustained microwave system for dielectric-constant measurement of lossy organic liquids. IEEE Trans Microw Theory Tech 60(5):1444–1455

    Article  Google Scholar 

  25. International Diabetes Federation (2017) IDF diabetes atlas, 8th edn. International Diabetes Federation, Brussels

    Google Scholar 

  26. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Google Scholar 

  27. Juan CG, Bronchalo E, Potelon B, Quendo C, Ávila-Navarro E, Sabater-Navarro JM (2019) Concentration measurement of microliter-volume water–glucose solutions using Q factor of microwave sensors. IEEE Trans Instrum Meas 68(7):2621–2634

    Article  Google Scholar 

  28. Juan CG, Bronchalo E, Potelon B, Quendo C, Sabater-Navarro JM (2019) Glucose concentration measurement in human blood plasma solutions with microwave sensors. Sensors 19(17):3779

    Article  Google Scholar 

  29. Juan CG, García H, Ávila-Navarro E, Bronchalo E, Galiano V, Moreno O, Orozco D, Sabater-Navarro JM (2019) Feasibility study of portable microwave microstrip open-loop resonator for noninvasive blood glucose level sensing: proof of concept. Med Biol Eng Comput 57(11):2389–2405. [Online]. Available: https://rdcu.be/bP1T6. Accessed 1 Sept 2019

  30. Juan CG, Bronchalo E, Torregrosa G, Ávila E, García N, Sabater-Navarro JM (2017) Dielectric characterization of water glucose solutions using a transmission/reflection line method. Biomed Signal Process Control 31(1):139–147

    Article  Google Scholar 

  31. Juan CG, Bronchalo E, Torregrosa G, Garcia A, Sabater-Navarro JM (2015) Microwave microstrip resonator for developing a non-invasive glucose sensor. Int J Comput Assist Radiol Surg 10(S1):172–173

    Google Scholar 

  32. Juan CG, Potelon B, Quendo C, Bronchalo E, Sabater-Navarro JM (2019) Highly-sensitive glucose concentration sensor exploiting inter-resonators couplings. In: Proceedings of the 49th European microwave conference (EuMC), Paris, pp 662–665

    Google Scholar 

  33. García H, Juan CG, Ávila-Navarro E, Bronchalo E, Sabater-Navarro JM (2019) Portable device based on microwave resonator for noninvasive blood glucose monitoring. In: Proceedings of the 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin, pp 1115–1118

    Google Scholar 

  34. Juan CG, Blanco-Angulo C, Bermejo N, García H, Vicente-Samper JM, Ávila E, Sabater-Navarro JM (2019) Concept of a system for real-time measurement and visualization of brain-shift. In: Proceedings of the 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), Berlin

    Google Scholar 

  35. Vicente JM, Ávila-Navarro E, Juan CG, García N, Sabater-Navarro JM (2016) Design of wearable bio patch for monitoring patient’s temperature. In: Proceedings of the 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Orlando, FL, pp 4792–4795

    Google Scholar 

  36. Garcia-Martinez A, Mora R, Juan CG, Compañ AF, Garcia N, Sabater-Navarro JM (2016) Toward an enhanced modular operation room. In: Proceedings of the IEEE RAS/EMBS 6th international conference on biomedical robotics and biomechatronics (BioRob), Singapore, pp 413–417

    Google Scholar 

  37. Díez JA, Badesa FJ, Ezquerro S, Sabater JM, Bernabeu Á, Juan CG, Garcia-Aracil N (2015) HELPER: collaborative project to develop a rehabilitation robotic device. In: Proceedings of the ROBOT’2015: second Iberian robotics conference, Lisbon

    Google Scholar 

  38. Juan CG, Bronchalo E, Torregrosa G, García A, Sabater-Navarro JM (2015) Microwave microstrip resonator for developing a non-invasive glucose sensor. In: Proceedings of the computer assisted radiology and surgery 29th international congress and exhibition (CARS), Barcelona, pp 172–173

    Google Scholar 

  39. García-Martínez Á, Juan CG, García N, Sabater-Navarro JM (2015) Automatic detection of surgical gauzes using computer vision. In: Proceedings of the 23rd Mediterranean conference on control and automation (MED), Torremolinos, pp 747–751

    Google Scholar 

  40. Juan CG, Blanco-Angulo C, Bermejo N, García H, Vicente JM, Avila E, Sabater-Navarro JM (2019) Sistema no invasivo para la medida y visualización de desplazamientos de tejidos en neurocirugía. In: Actas del 11º Simposio de Bioingeniería del Comité Español de Automática, Valencia

    Google Scholar 

  41. Juan CG, García Á, Vicente JM, Sabater-Navarro JM (2017) Plataforma basada en la integración de Matlab® y ROS para la docencia de robótica de servicio. In: Actas de las XXXVIII Jornadas de Automática, Gijón, pp 766–771

    Google Scholar 

  42. Juan CG, Vicente JM, Bermejo N, García Á, Sabater-Navarro JM (2017) Diseño de un dispositivo háptico multigestual para simulación quirúrgica. In: Libro de Actas de las Jornadas Nacionales de Robótica 2017, Valencia, p 21

    Google Scholar 

  43. García A, Vicente JM, Juan CG, Sabater-Navarro JM (2016) Algoritmo para la detección automática de sangrados quirúrgicos utilizando visión por computador. In: Actas de las XXXVII Jornadas de Automática, Madrid, pp 835–839

    Google Scholar 

  44. Vicente JM, Ávila-Navarro E, Juan CG, Sabater-Navarro JM (2016) Diseño de un bio-patch NFC para la monitorización de la temperatura corporal. In: Resúmenes del XXIII Seminario Annual de Automática, Electrónica Industrial e Instrumentación (SAAEI), Elche, p INS13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Juan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juan, C.G. (2021). Introduction. In: Designing Microwave Sensors for Glucose Concentration Detection in Aqueous and Biological Solutions . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-76179-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76179-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76178-3

  • Online ISBN: 978-3-030-76179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics