Skip to main content

Non-Linear and Non-Gaussian State Space Models

  • Chapter
  • First Online:
Bayesian Inference of State Space Models

Abstract

This chapter discusses estimation for non-linear and non-Gaussian state space methods. We start by defining conditionally Gaussian and more general non-Gaussian and non-linear state space models. The text reviews some classes of the many possibilities of non-Gaussian models. In particular, dynamic generalised linear models (DGLM) are discussed aimed at categorical time series, count data, data for positive-valued time series, continuous proportions and so forth. Other models such as bearings-only tracking and stochastic volatility models are also considered. The first attempts to model non-Gaussian state space models includes the power local level models and these are described for historical and pedagogical purposes. The chapter moves on discussing approximate inference such as the extended Kalman filter and the unscented Kalman filter. Sequential Monte Carlo methods are reviewed and some illustrative examples are presented. Markov chain Monte Carlo is discussed for the class of DGLMs, and the chapter concludes by considering dynamic survival modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society Series B, 72(3), 269–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Angelova, D., & Mihaylova, L. (2008). Extended object tracking using Monte carlo methods. IEEE Transactions on Signal Processing, 56(2), 825–832.

    Article  MathSciNet  MATH  Google Scholar 

  • Bersimis, S., & Triantafyllopoulos, K. (2020). Dynamic non-parametric monitoring of air-quality. Methodology and Computing in Applied Probability, 22, 1457–1479.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlin, B. P., Polson, N. G., & Stoffer, D. S. (1992). A Monte Carlo approach to nonnormal and nonlinear state-space modeling. Journal of the American Statistical Association, 87, 493–500.

    Article  Google Scholar 

  • Chen, R., & Liu, J. S. (1996). Predictive updating methods with application to Bayesian classification. Journal of the Royal Statistical Society Series B, 58, 397–415.

    MathSciNet  MATH  Google Scholar 

  • Chopin, N., & Papaspiliopoulos, O. (2020). An introduction to sequential Monte Carlo. New York: Springer.

    Book  MATH  Google Scholar 

  • Collett, D. (2003). Modelling survival data in medical research (2nd ed.). New York: Chapman and Hall.

    MATH  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society Series B, 34, 187–220.

    MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269–275.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R., & Oakes, D. (1984). Analysis of survival data. New York: Chapman and Hall.

    Google Scholar 

  • Diaconis, P., & Ylvisaker, D. (1979). Conjugate priors for exponential families. Annals of Statistics, 7, 269–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Djeundje, V. B., & Crook, J. (2019). Dynamic survival models with varying coefficients for credit risks. European Journal of Operational Research, 16(1), 319–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Douc, R., Cappe, O., & Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In Image and Signal Processing Analysis.

    Google Scholar 

  • Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. New York: Springer.

    Book  MATH  Google Scholar 

  • Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential monte carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197–208.

    Article  Google Scholar 

  • Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods (2nd ed.). Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Fahrmeir, L. (1992). Posterior mode estimation by extended Kalman filtering for multivariate generalised linear models. Journal of the American Statistical Association, 87, 501–509.

    Article  MATH  Google Scholar 

  • Fahrmeir, L. (1994). Dynamic modelling and penalized likelihood estimation for discrete time survival data. Biometrika, 81(2), 317–330.

    Article  MATH  Google Scholar 

  • Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models. New York: Springer.

    Book  MATH  Google Scholar 

  • Fearnhead, P. (2002). Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11, 848–862.

    Article  MathSciNet  Google Scholar 

  • Fruhwirth-Schnatter, S. (1994a). Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering. Statistics and Computing, 4, 259–269.

    Article  Google Scholar 

  • Gamerman, D. (1991). Dynamic Bayesian models for survival data. Journal of the Royal Statistical Society Series C, 40(1), 63–79.

    MATH  Google Scholar 

  • Gamerman, D. (1998). Markov chain Monte Carlo for dynamic generalised linear models. Biometrika, 85, 215–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference (2nd ed.). New York: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Gamerman, D., dos Santos, T. R., & Franco, G. C. (2013). A non-Gaussian family of state space-models with exact marginal likelihood. Journal of Time Series Analysis, 34, 625–645.

    Article  MathSciNet  MATH  Google Scholar 

  • Gamerman, D., & West, M. (1987). An application of dynamic survival models in unemployment studies. The Statistician, 36, 269–274.

    Article  Google Scholar 

  • Gilks, W. R., & Berzuini, C. (2001). Following a moving target – Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society Series B, 63(1), 127–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Godsill, S., Doucet, A., & West, M. (2004). Monte Carlo smoothing for nonlinear time series. Journal of the American Statistical Association, 99(465), 156–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE-Proceedings-F, 140, 107–113.

    Google Scholar 

  • Grewal, M. S., & Andrews, A. P. (2010). Applications of Kalman filtering in aerospace 1960 to the present: Historical perspectives. IEEE Control Systems Magazine, 30(3), 69–78.

    Article  MathSciNet  Google Scholar 

  • Harvey, A. C., & Fernandes, C. (1989). Time series models for count or qualitative observations. Business and Econmic Statistics, 7, 407-417.

    Google Scholar 

  • Harvey, A. C., Koopman, S. J., & Shephard, N. (2004). State space and unobserved component models: Theory and applications. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  • He, J., McGee, D. L., & Niu, X. (2010). Application of the Bayesian dynamic survival model in medicine. Statistics in Medicine, 29, 347–360.

    Article  MathSciNet  Google Scholar 

  • Hemming, K., & Shaw, J. E. H. (2002). A parametric dynamic survival model applied to breast cancer survival times. Journal of the Royal Statistical Society Series C, 51(4), 421–435.

    Article  MathSciNet  MATH  Google Scholar 

  • Hemming, K., & Shaw, J. E. H. (2005). A class of parametric dynamic survival models. Lifetime Data Analysis, 11, 81–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Hue, C., Cadre, J. P. L., & Pérez, P. (2002). Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Transactions on Signal Processing, 50(2), 309–325.

    Article  Google Scholar 

  • Julier, S. J. (2002). The scaled unscented transformation. In Proceedings of the 2002 American Control Conference.

    Google Scholar 

  • Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. In Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls.

    Google Scholar 

  • Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. In Proceedings of the IEEE (Vol. 92, pp. 401–422).

    Google Scholar 

  • Julious, S. A., Campbell, M. J., Bianchi, S. M., & Murray-Thomas, T. (2011). Seasonality of medical contacts in school-aged children with asthma: association with school holidays. Public Health, 125, 769–776.

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.

    Article  MathSciNet  Google Scholar 

  • Karlis, D., & Xekalaki, E. (2005). Mixed Poisson distribution. International Statistical Review, 73(1), 35–58.

    Article  MATH  Google Scholar 

  • Kearns, B., Stevenson, M. D., Triantafyllopoulos, K., & Manca, A. (2019). Generalized linear models for flexible parametric modeling of the hazard function. Medical Decision Making, 39, 867–878.

    Article  Google Scholar 

  • Kearns, B., Stevenson, M. D., Triantafyllopoulos, K., & Manca, A. (2021). The extrapolation performance of survival models for data with a cure fraction: a simulation study. Value in Health (in press). https://doi.org/10.1016/j.jval.2021.05.009

  • Kedem, B., & Fokianos, K. (2002). Regression models for time series analysis. New York: Wiley.

    Book  MATH  Google Scholar 

  • Kitagawa, G. (1987). Non-Gaussian state-space modelling of nonstationary time series (with discussion). Journal of the American Statistical Association, 82, 1032–1063.

    MathSciNet  MATH  Google Scholar 

  • Kitagawa, G. (1998). A self-organizing state-space model. Journal of the American Statistical Association, 93, 1203–1215.

    Google Scholar 

  • Liu, J., & West, M. (2001). Sequential Monte Carlo Methods in practice. In D. A., de Freitas N., & G. N. (Eds.), chap. Combined parameter and state estimation in simulation-based filtering. New York: Springer.

    Google Scholar 

  • Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: methods and applications. New York: Wiley.

    Google Scholar 

  • Martinussen, T., & Scheike, T. H. (2006). Dynamic regression models for survival data. New York: Springer.

    MATH  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalised linear models (2nd ed.). New York: Chapman and Hall.

    Book  MATH  Google Scholar 

  • McGee, L. A., & Schmidt, S. F. (1985, November). Discovery of the Kalman filter as a practical tool for aerospace and industry. NASA Technical Memorandum 86847.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 1087–1091.

    Article  MATH  Google Scholar 

  • Mihaylova, L., Carmi, A. Y., Septier, F., & Gning, A. (2014). Overview of Bayesian sequential Monte Carlo methods for group andextended object tracking. Digital Signal Processing, 25, 1–16.

    Article  Google Scholar 

  • Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalised linear models. Journal of the Royal Statistical Society Series A, 135, 370–384.

    Article  Google Scholar 

  • Pakrashi, A., & Namee, B. M. (2019). Kalman filter-based heuristic ensemble (kfhe): A new perspective on multi-class ensemble classification using Kalman filters. Information Sciences, 485, 456–485.

    Article  Google Scholar 

  • Petris, G., Petrone, S., & Campagnoli, P. (2009). Dynamic linear models with R. New York: Springer.

    Book  MATH  Google Scholar 

  • Pitt, M. K., & Shephard, N. (1999). Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Ponomareva, K., & Date, P. (2013). Higher order sigma point filter: a new heuristic for nonlinear time series filtering. Applied Mathematics and Computation, 221, 662–671.

    Article  MathSciNet  MATH  Google Scholar 

  • Punchihewa, Y. G., Vo, B.-T., Vo, B.-N., & Kim, D. Y. (2018). Multiple object tracking in unknown backgrounds with labeled random finite sets. IEEE Transactions on Signal Processing, 66(11), 3040–3055.

    Article  MathSciNet  MATH  Google Scholar 

  • Radhakrishnan, R., Yadav, A., Date, P., & Bhaumik, S. (2018). A new method for generating sigma points and weights for nonlinear filtering. IEEE Control Systems Letters, 2(3), 519–524.

    Article  MathSciNet  Google Scholar 

  • Robert, C. P. (2007). The Bayesian choice: From decision-theoretic foundations to computational implementation (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.

    Book  MATH  Google Scholar 

  • Saab, S. S. (2004). A heuristic Kalman filter for a class of nonlinear systems. IEEE Transactions in Automatic Control, 49(12), 2261–2265.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, S. F. (1981). The Kalman filter: Its recognition and development for aerospace applications. Journal of Guidance and Control, 4(1), 4–7.

    Article  Google Scholar 

  • Shephard, N. (1994a). Local scale models: state space alternative to integrated GARCH processes. Journal of Econometrics, 60, 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Shephard, N., & Pitt, M. K. (1997). Likelihood analysis for non-Gaussian measurement time series. Biometrika, 84, 653–667.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, J. Q. (1979). A generalisation of the Bayesian steady forecasting model. Journal of the Royal Statistical Society Series B, 41, 375–387.

    MATH  Google Scholar 

  • Smith, J. Q. (1981). The multiparameter steady model. Journal of the Royal Statistical Society Series B, 43, 256–260.

    MathSciNet  MATH  Google Scholar 

  • Smith, R. L., & Miller, J. E. (1986). A non-Gaussian state space model with application to prediction of records. Journal of the Royal Statistical Society Series B, 48, 79–88.

    MathSciNet  MATH  Google Scholar 

  • Storvik, G. (2002). Particle filters for state-space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing, 50, 281–290.

    Article  MathSciNet  Google Scholar 

  • Svenson, A. (1981). On the goodness-of-fit test for the multiplicative poisson model. Annals of Statistics, 9, 697–704.

    Article  MathSciNet  Google Scholar 

  • Triantafyllopoulos, K. (2009). Inference of dynamic generalised linear models: on-line computation and appraisal. International Statistical Review, 77, 439–450.

    Article  Google Scholar 

  • Triantafyllopoulos, K., Shakandli, M., & Campbell, M. J. (2019). Count time series prediction using particle filters. Quality and Reliability Engineering International, 35, 1445–1459.

    Article  Google Scholar 

  • Van Der Merwe, R., Doucet, A., de Freitas, N., & Wan, E. A. (2001). The unscented particle filter. In T. G. D. Todd K. Leen & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13).

    Google Scholar 

  • van Houwelingen, H., & Putter, H. (2012). Dynamic prediction in clinical survival analysis. CRC Press.

    MATH  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S-PLUS (4th ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Wagner, H. (2011). Bayesian estimation and stochastic model specification search for dynamic survival models. Statistics and Computing, 21, 231–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Wan, E. A., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium.

    Google Scholar 

  • West, M., Harrison, P. J., & Migon, H. S. (1985). Dynamic generalised linear models and Bayesian forecasting (with discussion). Journal of the American Statistical Association, 80, 73–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, K. J., & Farrow, M. (2017). Bayes linear kinematics in a dynamic survival model. International Journal of Approximate Reasoning, 80, 239–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Zaritskii, V. S., Svetnik, V. B., & Shimelevich, L. I. (1975). Monte Carlo technique in problems of optimal data processing. Automation and Remote Control, 12, 95–103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Triantafyllopoulos, K. (2021). Non-Linear and Non-Gaussian State Space Models. In: Bayesian Inference of State Space Models. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-76124-0_6

Download citation

Publish with us

Policies and ethics