Skip to main content

State Space Models

  • Chapter
  • First Online:
Bayesian Inference of State Space Models

Abstract

This chapter introduces state space models and provides some motivating examples. Linear Gaussian and non-linear, non-Gaussian models are introduced. Examples include linear trend and seasonal time series, time-varying regression, bearings-only tracking, financial time series and systems identification state space models. The chapter sets the stage for the book and provides a chapter-by-chapter description of the book. The chapter includes a brief historical overview of the developments that led to the discovery of the Kalman filter and the research directions in the wider field of state space modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aidala, V. I. (1979). Kalman filter behaviour in bearings-only tracking applications. IEEE Transactions on Aerospace and Electronic Systems, 15, 29–39.

    Article  Google Scholar 

  • Aldrich, J. (1998). Doing least squares: perspectives from Gauss and Yule. International Statistical Review, 66, 61–81.

    Article  MATH  Google Scholar 

  • Anand, D. K. (1984). Introduction to control systems (2nd ed.). London: Pergamon Press.

    MATH  Google Scholar 

  • Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Berzuini, C., & Gilks, W. (2001). Sequential Monte Carlo methods in practice. In A. Doucet, N. de Freitas, & N. Gordon (Eds.), Statistics for engineering and information science (pp. 117–138). New York: Springer.

    MATH  Google Scholar 

  • Bingham, N. H., & Fry, J. M. (2010). Regression: Linear models in statistics. New York: Springer.

    Book  MATH  Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis: Forecasting and control (4th ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Büuhler, W. K. (1981). Gauss: A biographical study. New York: Springer.

    Book  Google Scholar 

  • Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods (2nd ed.). Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Fearnhead, P. (2002). Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11, 848–862.

    Article  MathSciNet  Google Scholar 

  • Gauss, C. F. (1809). Theoria Motus Corporum Celestium (English translation by C.H. Davis (1857). Reprinted, 1963). New York: Dover Publications.

    Google Scholar 

  • Gauss, C. F. (1821/23/26). Theoria Combinutionis Observurionum Erroribus Minirnus Obnoxiue, in two parts with a supplement. reprinted with an english translation and notes by G.W. Stewart, (1995). Philadelphia: SIAM.

    Google Scholar 

  • Godolphin, E. J., & Harrison, P. J. (1975). Equivalence theorems for polynomial projecting predictors. Journal of the Royal Statistical Society Series B, 37, 205–215.

    MathSciNet  MATH  Google Scholar 

  • Grewal, M. S., & Andrews, A. P. (2015). Kalman filtering: Theory and practice using MATLAB (4th ed.). New York: Wiley.

    MATH  Google Scholar 

  • Halcombe Laning Jr., J., & Battin, R. H. (1956). Random processes in automatic control. New York: McGraw-Hill.

    Google Scholar 

  • Harrison, P. J. (1967). Exponential smoothing and short-term forecasting. Management Science, 13, 821–842.

    Article  MATH  Google Scholar 

  • Harrison, P. J., & Stevens, C. (1971). A Bayesian approach to short-term forecasting. Operations Research Quarterly, 22, 341–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, P. J., & Stevens, C. (1976). Bayesian forecasting (with discussion). Journal of the Royal Statistical Society Series B, 38, 205–247.

    MathSciNet  MATH  Google Scholar 

  • Harvey, A. C. (1981). The Kalman filter and its applications in econometrics and time series analysis. Methods of Operations Research, 44, 3–18.

    MathSciNet  MATH  Google Scholar 

  • Harvey, A. C. (1984). A unified view of statistical forecasting procedures. Journal of Forecasting, 3, 245–275.

    Article  Google Scholar 

  • Harvey, A. C. (1989). Forecasting, structural time series and the Kalman filter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harvey, A. C., Gardner, G., & Phillips, G. D. A. (1980). An algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering. Applied Statistics, 29, 311–322.

    Article  MATH  Google Scholar 

  • Jones, R. H. (1966). Exponential smoothing for multivariate time series. Journal of the Royal Statistical Society Series B, 28, 241–251.

    MathSciNet  MATH  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.

    Article  MathSciNet  Google Scholar 

  • Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, 83(1), 95–108.

    Article  MathSciNet  Google Scholar 

  • Kolmogorov, A. N. (1941). Stationary sequences in Hilbert space (in Russian). Moscow University Mathematics Bulletin, 2(6), 228–271.

    Google Scholar 

  • Legendre, A. M. (1805). Nouvelles Méthodes pour la Détermination des Orbites des Comètes. Paris: F. Didot.

    Google Scholar 

  • Lindsey, J. K. (2004). Statistical analysis of stochastic processes in time. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Loève, M. (1955). Probability theory. Van Nostrand Company Inc.

    MATH  Google Scholar 

  • Morrison, G. W., & Pike, D. H. (1977). Kalman filtering applied to statistical forecasting. Management Science, 23, 768–774.

    Article  MATH  Google Scholar 

  • Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journal of the American Statistical Association, 55, 299–305.

    Article  MATH  Google Scholar 

  • Plackett, R. L. (1950). Some theorems in least squares. Biometrika, 37, 149–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Plackett, R. L. (1991). Regression analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Raunch, H. E., Tung, F., & Streibel, C. T. (1965). Maximum likelihood estimators of linear dynamic systems. American Institute of Aeronautics and Astronautics Journal, 3, 1445–1450.

    Article  MathSciNet  Google Scholar 

  • Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Schweppe, F. C. (1965). Evaluation of likelihood signals for Gaussian signals. IEEE Transactions on Information Theory, 11, 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: With R examples (4th ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Stigler, S. M. (1986). The history of statistics. Cambridge, MA: Harvard University Press.

    MATH  Google Scholar 

  • Tsay, R. S. (2002). Analysis of financial time series. New York: Wiley.

    Book  MATH  Google Scholar 

  • West, M., & Harrison, P. J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Wiener, N. (1949). Extrapolation, Interpolation and smoothing of stationary time series with engineering applications. Cambridge, MA: MIT Press.

    Book  MATH  Google Scholar 

  • Young, P. C. (1968). The use of linear regression and related procedures for the identification of dynamic processes. In 7th Symposium of Adaptive Processes. IEEE.

    Google Scholar 

  • Young, P. C. (1969). The differential equation error method of process parameter estimation (Unpublished doctoral dissertation). Cambridge, England: University of Cambridge.

    Google Scholar 

  • Zadeh, L. A., & Desoer, C. A. (1963). Linear system theory: The state space approach. New York: McGraw Hill.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Triantafyllopoulos, K. (2021). State Space Models. In: Bayesian Inference of State Space Models. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-76124-0_1

Download citation

Publish with us

Policies and ethics