Skip to main content

The Morphology and Structure of the Hair Shaft

  • Chapter
  • First Online:
Androgenetic Alopecia From A to Z

Abstract

Even though hair exhibits no biochemical activity and is considered metabolically “dead”, it is produced by an impressively dynamic organ: the hair follicle. In fact, hair can be described as the holocrine secretion of the follicular bulb. Each strand of hair on the body is truly unique in terms of length, size, caliber, color, etc., but also in terms of exact chemical composition and concentration in organic and inorganic ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Popescu C, Höcker H. Hair—the most sophisticated biological composite material. Chem Soc Rev. 2007;36(8):1282–91.

    Article  CAS  PubMed  Google Scholar 

  2. Schlake T. Determination of hair structure and shape. Semin Cell Dev Biol. 2007;18(2):267–73.

    Article  CAS  PubMed  Google Scholar 

  3. Stead JΜ, Bourke JB. The Lindow man: the man in the bog. London: British Museum; 1986.

    Google Scholar 

  4. Hino H. Ammitzb ll T, M ller R, Asboe-Hansen G. ultrastructure of skin and hair of an Egyptian mummy. Transmission and scanning electron microscopic observations. J Cutan Pathol. 1982;9(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  5. Macko SA, Engel MH, Andrusevich V, Lubec G, O’Connell TC, Hedges RE. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1379):65–75.

    Article  CAS  Google Scholar 

  6. Krause K, Foitzik K. Biology of the hair follicle: the basics. Semin Cutan Med Surg. 2006;25(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  7. Wei G, Bhushan B, Torgerson PM. Nanomechanical characterization of human hair using nanoindentation and SEM. Ultramicroscopy. 2005;105(1–4):248–66.

    Article  CAS  PubMed  Google Scholar 

  8. Muto H, Ozeki N, Yoshioka I. Fine structure of the fully keratinized hair cuticle in the head hair of the human. Acta Anat (Basel). 1981;109(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  9. Birbeck MS, Mercer EH. The electron microscopy of the human hair follicle. II. The hair cuticle. J Biophys Biochem Cytol. 1957;3(2):215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feughelman M. Morphology and properties of hair. In: Johnson DH, editor. Hair and hair care. New York: Marcel Dekker; 1997. p. 1–12.

    Google Scholar 

  11. Bradbury JH, Leeder JD. Keratin fibres. IV. Structure of cuticle. Aust J Biol Sci. 1970;23(4):843–54.

    Article  CAS  PubMed  Google Scholar 

  12. Swift JA, Smith JR. Microscopical investigations on the epicuticle of mammalian keratin fibres. J Microsc. 2001;204(Pt 3):203–11.

    Article  CAS  PubMed  Google Scholar 

  13. von Allworden K. The properties of wool and a new method for detecting damaged wool. Z Angew Chem. 1916;29(1):77–85.

    Google Scholar 

  14. Jones LN, Swift JA. Structure of the fully formed hair shaft. In: Butler H, editor. Fundamentals of human hair science. England: Micelle Press; 1998. p. 47.

    Google Scholar 

  15. Smith JR, Swift JA. Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM. J Microsc. 2002;206(Pt 3):182–93.

    Article  CAS  PubMed  Google Scholar 

  16. Draelos ZK. Hair cosmetics. Dermatol Clin. 1991;9(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  17. Feughelman M, Willis BK. Mechanical extension of human hair and the movement of the cuticle. J Cosmet Sci. 2001;52(3):185–93.

    CAS  PubMed  Google Scholar 

  18. Wortsman X, Guerrero R, Wortsman J. Hair morphology in androgenetic alopecia: sonographic and electron microscopic studies. J Ultrasound Med. 2014;33(7):1265–72.

    Article  PubMed  Google Scholar 

  19. Orfanos C, Ruska H. [Fine structure of human hair. II. Hair-cortex]. Arch Klin Exp Dermatol. 1968;231(3):264–278.

    Google Scholar 

  20. Langbein L, Rogers MA, Winter H, Praetzel S, Beckhaus U, Rackwitz HR, Schweizer J. The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. J Biol Chem. 1999;274(28):19874–84.

    Article  CAS  PubMed  Google Scholar 

  21. Langbein L, Rogers MA, Winter H, Praetzel S, Schweizer J. The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. J Biol Chem. 2001;276(37):35123–32.

    Article  CAS  PubMed  Google Scholar 

  22. Powell BC, Rogers GE. The role of keratin proteins and their genes in the growth, structure and properties of hair. In: Jollès P, Zahn H, HöCker H, editors. Formation and structure of human Hair. Basel: Birkhäuser Verlag; 1996. p. 59–148.

    Google Scholar 

  23. Feughelman M. Natural protein fibers. J Appl Polym Sci. 2002;83(3):489–507.

    Article  CAS  Google Scholar 

  24. Rogers MA, Langbein L, et al. Characterization of a cluster of human high/ultrahigh sulfur keratin-associated protein genes embedded in the type I keratin gene domain on chromosome 17q12-21. J Biol Chem. 2001 Jun 1;276(22):19440–51.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson DJ, Sikorski J. Proceedings, 3rd international wool textile research conference, Paris, 1965. p. 53.

    Google Scholar 

  26. Jones LN. The isolation and characterization of alpha-keratin microfibrils. Biochim Biophys Acta. 1975;412(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gray J. Cosmetic hair treatments. In: Gray J, editor. The world of hair. London: Macmillian Press Ltd; 1997. p. 79–108.

    Google Scholar 

  28. Das-Chaudhuri AB, Chopra VP. Variation in hair histological variables: medulla and diameter. Hum Hered. 1984;34(4):217–21.

    Article  CAS  PubMed  Google Scholar 

  29. Deedrick DW, Kocj SL. Microscopy of Hair Part 1: A practical guide and manual for human hairs. National Criminal Justice Reference Service (NCJRS), 01/2004 https://archives.fbi.gov/archives/about-us/lab/forensic-science-communications/fsc/jan2004/research/2004_01_research01b.htm

  30. Hutchinson PE, Thompson JR. The size and form of the medulla of human scalp hair is regulated by the hair cycle and crosssectional size of the hair shaft. Br J Dermatol. 1999;140(3):438–45.

    Article  CAS  PubMed  Google Scholar 

  31. Clement JL, Hagege R, Le Pareux A, Connet J, Gastaldi G. New concepts about hair identification revealed by electron microscope studies. J Forensic Sci. 1981;26(3):447–58.

    Article  CAS  PubMed  Google Scholar 

  32. Kalasinsky KS. Drug distribution in human hair by infrared microscopy. Cell Mol Biol (Noisy-le-Grand). 1998;44(1):81–7.

    CAS  PubMed  Google Scholar 

  33. Swift JA. Morphology and histochemistry of human hair. EXS. 1997;78:149–75.

    CAS  PubMed  Google Scholar 

  34. Lee LD, Baden HP. Chemistry and composition of the keratins. Int J Dermatol. 1975;14(3):161–71.

    Article  CAS  PubMed  Google Scholar 

  35. Thibaut S, Collin C, Langbein L, Schweizer J, Gautier B, Bernard BA. Air keratin pattern in human hair follicles grown in vitro. Exp Dermatol. 2003;12(2):160–4.

    Article  CAS  PubMed  Google Scholar 

  36. Zahn H, Gattner HG. Hair sulfur amino acid analysis. EXS. 1997;78:239–58.

    CAS  PubMed  Google Scholar 

  37. Fraser RDB, McRae TP, Rogers GE. Keratins: Their composition, structure and biosynthesis. Springfield, IL: Charles C Thomas; 1972. p. 70–1.

    Google Scholar 

  38. Kreplak L, Franbourg A, Briki F, Leroy F, Dallé D, Doucet J. A new deformation model of hard alpha-keratin fibers at the nanometer scale: implications for hard alpha-keratin intermediate filament mechanical properties. Biophys J. 2002;82(4):2265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schweizer J, Langbein L, Rogers MA, Winter H. Hair follicle-specific keratins and their diseases. Exp Cell Res. 2007;313(10):2010–20.

    Article  CAS  PubMed  Google Scholar 

  41. Langbein L, Rogers MA, Praetzel-Wunder S, Böckler D, Schirmacher P, Schweizer J. Novel type I hair keratins K39 and K40 are the last to be expressed in differentiation of the hair: completion of the human hair keratin catalog. J Invest Dermatol. 2007;127(6):1532–5.

    Article  CAS  PubMed  Google Scholar 

  42. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA, Wright MW. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174(2):169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wolfram LJ. Human hair: a unique physicochemical composite. J Am Acad Dermatol. 2003;48(6 Suppl):S106–14.

    Article  PubMed  Google Scholar 

  44. Orfanos C, Ruska H. [Keratins of skin and hair]. Hautarzt. 1970;21(8):343–51.

    Google Scholar 

  45. Draelos ZD. Hair care; an illustrated dermatologic handbook, vol. 217. London: Taylor and Francis; 2005.

    Google Scholar 

  46. Robbins CR. Chemical and physical behavior of human Hair. New York: Springer; 1994.

    Book  Google Scholar 

  47. Erik B, Havitcioglu H, Aktan S, Karakus N. Biomechanical properties of human hair with different parameters. Skin Res Technol. 2008;14(2):147–51.

    Article  PubMed  Google Scholar 

  48. Goldsmith LA, Baden HP. The mechanical properties of hair. II. Chemical modifications and pathological hairs. J Invest Dermatol. 1971;56(3):200–4.

    Article  CAS  PubMed  Google Scholar 

  49. Goldsmith LA, Baden HP. The mechanical properties of hair. I. the dynamic sonic modulus. J Invest Dermatol. 1970;55(4):256–9.

    Article  CAS  PubMed  Google Scholar 

  50. Franbourg A, Hallegot P, Baltenneck F, Toutain C, Leroy F. Current research on ethnic hair. J Am Acad Dermatol. 2003;48(6 Suppl):S115–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wertz PW. Integral lipids of hair and stratum corneum. EXS. 1997;78:227–37.

    CAS  PubMed  Google Scholar 

  52. Jones LN, Rivett DE. The hydrophobic surface barrier of mammalian hair. Exp Dermatol. 1999;8(4):351–2.

    CAS  PubMed  Google Scholar 

  53. Brosche T, Dressler S, Platt D. Age-associated changes in integral cholesterol and cholesterol sulfate concentrations in human scalp hair and finger nail clippings. Aging (Milano). 2001;13(2):131–8.

    CAS  PubMed  Google Scholar 

  54. Terashi H, Izumi K, Rhodes LM, Marcelo CL. Human stratified squamous epithelia differ in cellular fatty acid composition. J Dermatol Sci. 2000;24(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  55. Nagase S, Kajiura Y, Mamada A, Abe H, Shibuichi S, Satoh N, Itou T, Shinohara Y, Amemiya Y. Changes in structure and geometric properties of human hair by aging. J Cosmet Sci. 2009;60(6):637–48.

    PubMed  Google Scholar 

  56. Hagens R, Wiersbinski T, Becker ME, Weisshaar J, Schreiner V, Wenck H. Qualification of an automated device to objectively assess the effect of hair care products on hair shine. J Cosmet Sci. 2011;62(5):453–67.

    PubMed  Google Scholar 

  57. Wertz PW, Downing DT. Integral lipids of human hair. Lipids. 1988;23(9):878–81.

    Article  CAS  PubMed  Google Scholar 

  58. Auwarter V, Sporkert F, Hartwig S, Pragst F, Vater H, Diefenbacher A. Fatty acid ethyl esters in hair as markers of alcohol consumption. Segmental hair analysis of alcoholics, social drinkers, and teetotalers. Clin Chem. 2001;47(12):2114–23.

    Article  CAS  PubMed  Google Scholar 

  59. Castanet J, Ortonne JP. Hair pigmentation. In: Camacho FM, Randall VA, Price VH, editors. Hair and its disorders: biology, pathology and management. London: Martin Dunitz; 2000. p. 49–65.

    Chapter  Google Scholar 

  60. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155–228.

    Article  CAS  PubMed  Google Scholar 

  61. Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445(7130):843–50.

    Article  CAS  PubMed  Google Scholar 

  62. Burnett JB, Holstein TJ, Quevedo WC Jr. Electrophoretic variations of tyrosinase in follicular melanocytes during the hair growth cycle in mice. J Exp Zool. 1969;171(3):369–76.

    Article  CAS  PubMed  Google Scholar 

  63. Commo S, Bernard BA. Melanocyte subpopulation turnover during the human hair cycle: an immunohistochemical study. Pigment Cell Res. 2000;13(4):253–9.

    Article  CAS  PubMed  Google Scholar 

  64. Sharov A, Tobin DJ, Sharova TY, Atoyan R, Botchkarev VA. Changes in different melanocyte populations during hair follicle involution (catagen). J Invest Dermatol. 2005;125(6):1259–67.

    Article  CAS  PubMed  Google Scholar 

  65. Corino GL, French PW, Lee M, Ajaj MM, Haklani J, Mistry DA, Phan K, Yuile PG. Characterization of a test for invasive breast cancer using X-ray diffraction of Hair-results of a clinical trial. Breast Cancer (Auckl). 2009;3:83–90.

    PubMed  Google Scholar 

  66. West PM, Packer C. Sexual selection, temperature, and the lion’s mane. Science. 2002;297(5585):1339–43.

    Article  CAS  PubMed  Google Scholar 

  67. Bubenik GA, Bubenik AB. Seasonal variations in hair pigmentation of white-tailed deer and their relationship to sexual activity and plasma testosterone. J Exp Zool. 1985;235(3):387–95.

    Article  CAS  PubMed  Google Scholar 

  68. Haase E, Ito S, Wakamatsu K. Influences of sex, castration, and androgens on the eumelanin and pheomelanin contents of different feathers in wild mallards. Pigment Cell Res. 1995;8(3):164–70.

    Article  CAS  PubMed  Google Scholar 

  69. Morgan E. The ascent of woman. London: Souvenir Press; 1985.

    Google Scholar 

  70. Bertazzo A, Costa C, Biasiolo M, Allegri G, Cirrincione G, Presti G. Determination of copper and zinc levels in human hair: influence of sex, age, and hair pigmentation. Biol Trace Elem Res. 1996;52(1):37–53.

    Article  CAS  PubMed  Google Scholar 

  71. Paus R. Immunology of the hair follicle. In: Bos JD, editor. The skin immune system. Boca Raton, FL: CRC Press; 1997. p. 377–95.

    Google Scholar 

  72. Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet. 2009;18(R1):R9–17.

    Article  CAS  PubMed  Google Scholar 

  73. International HapMap Consortium, Frazer KA, Ballinger DG, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  Google Scholar 

  74. Plonka PM, Passeron T, Brenner M, et al. What are melanocytes really doing all day long? Exp Dermatol. 2009;18(9):799–819.

    Article  CAS  PubMed  Google Scholar 

  75. Cheun WL. The chemical structure of melanin. Pigment Cell Res. 2004 Aug;17(4):422–3.

    Article  CAS  PubMed  Google Scholar 

  76. Borovansk J, Elleder M. Melanosome degradation: fact or fiction. Pigment Cell Res. 2003;16(3):280–6.

    Article  Google Scholar 

  77. Giuseppe P. Melanins and melanogenesis. London: Academic Press Inc Ltd; 1992. p. 10–1.

    Google Scholar 

  78. Margalith PZ. Pigment microbiology. London: Chapman and Hall; 1992. p. 123–5.

    Google Scholar 

  79. Burchill SA. Regulation of tyrosinase in hair follicular melanocytes of the mouse during the synthesis of eumelanin and phaeomelanin. Ann N Y Acad Sci. 1991;642:396–405.

    Article  CAS  PubMed  Google Scholar 

  80. Setty SR, Tenza D, Sviderskaya EV, Bennett DC, Raposo G, Marks MS. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature. 2008;454(7208):1142–6.

    Article  CAS  PubMed  Google Scholar 

  81. Beermann F, Ruppert S, Hummler E, Bosch FX, Müller G, Rüther U, Schütz G. Rescue of the albino phenotype by introduction of a functional tyrosinase gene into mice. EMBO J. 1990;9(9):2819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Winder A, Kobayashi T, Tsukamoto K, Urabe K, Aroca P, Kameyama K, Hearing VJ. The tyrosinase gene family interactions of melanogenic proteins to regulate melanogenesis. Cell Mol Biol Res. 1994;40(7–8):613–26.

    CAS  PubMed  Google Scholar 

  83. Larsson BS. Interaction between chemicals and melanin. Pigment Cell Res. 1993;6(3):127–33.

    Article  CAS  PubMed  Google Scholar 

  84. Slominski A, Paus R, Plonka P, Chakraborty A, Maurer M, Pruski D, Lukiewicz S. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol. 1994;102(6):862–9.

    Article  CAS  PubMed  Google Scholar 

  85. Rasmussen N, Nelson F, Govitrapong P, Ebadi M. The actions of melanin and melanocyte stimulating hormone (MSH). Neuroendocrinol Lett. 1999;20(5):265–82.

    CAS  PubMed  Google Scholar 

  86. Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36(1):29–54.

    Article  CAS  PubMed  Google Scholar 

  87. Wilczek A, Kondoh H, Mishima Y. Composition of mammalian eumelanins: analyses of DHICA-derived units in pigments from hair and melanoma cells. Pigment Cell Res. 1996;9(2):63–7.

    Article  CAS  PubMed  Google Scholar 

  88. Mussalo-Rauhamaa H, Lakomaa EL, Kianto U, Lehto J. Element concentrations in serum, erythrocytes, hair and urine of alopecia patients. Acta Derm Venereol. 1986;66(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  89. Mikasa H, Suzuki Y, Fujii N, Nishiyama K. Adsorption and elution of metals on hair. Biol Trace Elem Res. 1988;16(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  90. Fenton D, Morris IW, Kendall MD. Energy-dispersive x-ray microanalysis (EDX): a method to assess the elemental composition of hair. Br J Dermatol. 1988;119(Suppl 33):46–7.

    Article  Google Scholar 

  91. Wilhelm M, Ohnesorge FK, Hötzel D. Cadmium, copper, lead, and zinc concentrations in human scalp and pubic hair. Sci Total Environ. 1990;92:199–206.

    Article  CAS  PubMed  Google Scholar 

  92. Wibowo AA, Herber RF, Das HA, Roeleveld N, Zielhuis RL. Levels of metals in hair of young children as an indicator of environmental pollution. Εnviron Res. 1986;40(2):346–56.

    Article  CAS  Google Scholar 

  93. Jones J, Tomlinson K, Moore C. The simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, 6-acetyl-morphine, and oxycodone in hair and oral fluid. J Anal Toxicol. 2002;26(3):171–5.

    Article  CAS  PubMed  Google Scholar 

  94. Bhushan B, Chen N. AFM studies of environmental effects on nanomechanical properties and cellular structure of human hair. Ultramicroscopy. 2006;106(8–9):755–64.

    Article  CAS  PubMed  Google Scholar 

  95. Wickett RR. Permanent waving and straightening of hair. Cutis. 1987;39(6):496–7.

    CAS  PubMed  Google Scholar 

  96. Marsh JM, Clarke CJ, Meinert K, Dahlgren RM. High-pressure differential scanning calorimetry of colorant products. J Cosmet Sci. 2007;58(6):621–7.

    CAS  PubMed  Google Scholar 

  97. Han MO, Chun JA, Lee JW, Chung CH. Effects of permanent waving on changes of protein and physicomorphological properties in human head hair. J Cosmet Sci. 2008;59(3):203–15.

    CAS  PubMed  Google Scholar 

  98. Yamauchi C, Mochizuki A, Takayama K, Suzuki S, Sakaino A, Okazaki W. Enzymatic approach to analyze the effects of mercaptans on hair. J Cosmet Sci. 2009;60(5):527–35.

    CAS  PubMed  Google Scholar 

  99. Kuzuhara A. Analysis of structural changes in permanent waved human hair using Raman spectroscopy. Biopolymers. 2007;85(3):274–83.

    Article  CAS  PubMed  Google Scholar 

  100. Messenger AG. The control of hair growth: an overview. J Invest Dermatol. 1993;101(1 Suppl):4S–9S.

    Article  CAS  PubMed  Google Scholar 

  101. Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311(5986):560–2.

    Article  CAS  PubMed  Google Scholar 

  102. Reynolds AJ, Jahoda CA. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development. 1992;115(2):587–93.

    Article  CAS  PubMed  Google Scholar 

  103. Oliver RF. The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J Embryol Exp Morphol. 1970;23(1):219–36.

    CAS  PubMed  Google Scholar 

  104. Nissimov J. Normal head-hair length is correlated with its diameter. Clin Exp Dermatol. 2004;29(6):649–57.

    Article  CAS  PubMed  Google Scholar 

  105. Nikiforidis G, Tsambaos D, Balas C, Bezerianos A. A method for the determination of viscoelastic parameters of human hair in relation to its structure. Skin Pharmacol. 1993;6(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  106. Mamada A, Nakamura K. A study of the volume and bounce decrease in hair with aging using bending elasticity measurements. J Cosmet Sci. 2007;58(5):485–94.

    PubMed  Google Scholar 

  107. Khumalo NP, Dawber RP, Ferguson DJ. Apparent fragility of African hair is unrelated to the cystine-rich protein distribution: a cytochemical electron microscopic study. Exp Dermatol. 2005;14(4):311–4.

    Article  CAS  PubMed  Google Scholar 

  108. Syed A, Kuhajda A, Ayoub H, Ahmad K, Frank EM. African-American hair: its physical properties and differences relative to Caucasian hair. Cosmet Toil. 1995;110(1):39–48.

    Google Scholar 

  109. Kamath YK, Hornby SB, Weigmann HD. Mechanical and fractographic behavior of negroid hair. J Soc Cosmet Chem. 1984;35(1):21–43.

    Google Scholar 

  110. Bryant H, Porter C, Yang G. Curly hair: measured differences and contributions to breakage. Int J Dermatol. 2012;51 Suppl 1:8–11. 9–13

    Article  PubMed  Google Scholar 

  111. Thibaut S, Gaillard O, Bouhanna P, Cannell DW, Bernard BA. Human hair shape is programmed from the bulb. Br J Dermatol. 2005;152(4):632–8.

    Article  CAS  PubMed  Google Scholar 

  112. Das BM. A study of cross sections of head hair from some caucasoid and mongoloid populations of Assam, India. Z Morphol Anthropol. 1974;65(3):324–8.

    Article  CAS  PubMed  Google Scholar 

  113. Rook A, Hair II. Racial and other genetic variations in hair form. Br J Dermatol. 1975;92(5):599–600.

    Article  CAS  PubMed  Google Scholar 

  114. Dawber RPR, Messenger AG. Hair follicle structure, keratinization and the physical properties of hair. In: Dawber RPR, editor. Physical properties of hair. Oxford: Blackwell Science; 1997. p. 45–50.

    Google Scholar 

  115. Haake HM, Marten S, Seipel W, Eisfeld W. Hair breakage—how to measure and counteract. J Cosmet Sci. 2009;60(2):143–51.

    CAS  PubMed  Google Scholar 

  116. Baltenneck F, Franbourg A, Leroy F, Mandon M, Vayssie C. A new approach to the bending properties of hair fibers. J Cosmet Sci. 2001;52(6):355–68.

    CAS  PubMed  Google Scholar 

  117. Evans TA. Fatigue testing of hair-a statistical approach to hair breakage. J Cosmet Sci. 2009;60(6):599–616.

    PubMed  Google Scholar 

  118. Dankovich TA, Kamath YK, Ruetsch S. Tensile properties of twisted hair fibers. J Cosmet Sci. 2004;55(Suppl):S79–90.

    PubMed  Google Scholar 

  119. Porter CE, Dixon F, Khine CC, Pistorio B, Bryant H, de la Mettrie R. The behavior of hair from different countries. J Cosmet Sci. 2009;60(2):97–109.

    CAS  PubMed  Google Scholar 

  120. Robbins C. Hair breakage during combing. II. Impact loading and hair breakage. J Cosmet Sci. 2006;57(3):245–57.

    PubMed  Google Scholar 

  121. Robbins C, Kamath Y. Hair breakage during combing. III. The effects of bleaching and conditioning on short and long segment breakage by wet and dry combing of tresses. J Cosmet Sci. 2007;58(4):477–84.

    PubMed  Google Scholar 

  122. Robbins C, Kamath Y. Hair breakage during combing. IV. Brushing and combing hair. J Cosmet Sci. 2007;58(6):629–36.

    PubMed  Google Scholar 

  123. Yu Y, Yang W, Wang B, Meyers MA. Structure and mechanical behavior of human hair. Mater Sci Eng C Mater Biol Appl. 2017;73:152–63.

    Article  CAS  PubMed  Google Scholar 

  124. Popescu C, Höcker H. Chapter 4. Cytomechanics of hair basics of the mechanical stability. Int Rev Cell Mol Biol. 2009;277:137–56.

    Article  CAS  PubMed  Google Scholar 

  125. ROBBINS CR, CRAWFORD RJ. Cuticle damage and the tensile properties of human hair. J Soc Cosmet Chem. 1991;42(1):59–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassakis, K. (2022). The Morphology and Structure of the Hair Shaft. In: Androgenetic Alopecia From A to Z . Springer, Cham. https://doi.org/10.1007/978-3-030-76111-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76111-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76110-3

  • Online ISBN: 978-3-030-76111-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics