Skip to main content

Geometry and Information Theory for Qubits and Qutrits

  • Chapter
  • First Online:
A First Course in the Sporadic SICs

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 41))

  • 295 Accesses

Abstract

Because we can treat quantum states as probability distributions, we can apply the concepts and methods of probability theory to them, including Shannon’s theory of information. The structures that I will discuss in the following sections came to my attention thanks to Shannon theory. In particular, the question of recurring interest is, “Out of all the extremal states of quantum state space—i.e., the ‘pure’ states \(\rho = {\left| \psi \big \rangle \!\big \langle \psi \right| }\)—which minimize the Shannon entropy of their probabilistic representation?” I will focus on the cases of dimensions 2, 3 and 8, where the so-called sporadic SICs occur. In these cases, the information-theoretic question of minimizing Shannon entropy leads to intricate geometrical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.N.M. Tabia, Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices. Phys. Rev. A 86, 062107 (2012). https://doi.org/10.1103/PhysRevA.86.062107

    Article  ADS  Google Scholar 

  2. G.N.M. Tabia, D.M. Appleby, Exploring the geometry of qutrit state space using symmetric informationally complete probabilities. Phys. Rev. A 88(1), 012131 (2013). https://doi.org/10.1103/PhysRevA.88.012131

    Article  ADS  Google Scholar 

  3. B.C. Stacey, SIC-POVMs and compatibility among quantum states. Mathematics 4(2), 36 (2016). https://doi.org/10.3390/math4020036

    Article  MATH  Google Scholar 

  4. H. Zhu, Super-symmetric informationally complete measurements. Ann. Phys. (NY) 362, 311–326 (2015). https://doi.org/10.1016/j.aop.2015.08.005

  5. A. Streltsov, G. Adesso, M.B. Plenio, Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017). https://doi.org/10.1103/RevModPhys.89.041003

    Article  ADS  MathSciNet  Google Scholar 

  6. C.H. Bennett, C.A. Fuchs, J.A. Smolin, Entanglement-enhanced classical communication on a noisy quantum channel, in Quantum Communication, Computing, and Measurement (Springer, Berlin, 1997)

    Google Scholar 

  7. H. Zhu, M. Hayashi, L. Chen, Axiomatic and operational connections between the \(l_1\)-norm of coherence and negativity. Phys. Rev. A 97, 022342 (2018). https://doi.org/10.1103/PhysRevA.97.022342

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Appleby, H.B. Dang, C.A. Fuchs, Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum uncertainty states. Entropy 16, 1484 (2014)

    Article  ADS  Google Scholar 

  9. C.A. Fuchs, R. Schack, Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693–1715 (2013). https://doi.org/10.1103/RevModPhys.85.1693

    Article  ADS  Google Scholar 

  10. B. Bodmann, J. Haas, A short history of frames and quantum designs (2017). arXiv:1709.01958

  11. C.A. Fuchs, B.C. Stacey, QBism: quantum theory as a hero’s handbook (2016). arXiv:1612.07308

  12. W.K. Wootters, D.M. Sussman, Discrete phase space and minimum-uncertainty states (2007). arXiv:0704.1277

  13. M. Appleby, I. Bengtsson, H.B. Dang, Galois unitaries, Mutually Unbiased Bases, and MUB-balanced states (2014). arXiv:1409.7887

  14. I. Bengtsson, K. Blanchfield, A. Cabello, A Kochen-Specker inequality from a SIC. Phys. Lett. A 376, 374–376 (2012). https://doi.org/10.1016/j.physleta.2011.12.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V. Veitch, S.A.H. Mousavian, D. Gottesman, J. Emerson, The resource theory of stabilizer computation. New J. Phys. 16, 013009 (2014). https://doi.org/10.1088/1367-2630/16/1/013009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S.G. Hoggar, 64 lines from a quaternionic polytope. Geom. Dedicata. 69, 287–289 (1998). https://doi.org/10.1023/A:1005009727232

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Szymusiak, W. Słomczyński, Informational power of the Hoggar symmetric informationally complete positive operator-valued measure. Phys. Rev. A 94, 012122 (2015). https://doi.org/10.1103/PhysRevA.94.012122

    Article  ADS  Google Scholar 

  18. E. Campbell, M. Howard, Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017). https://doi.org/10.1103/PhysRevLett.118.090501

    Article  Google Scholar 

  19. J. Lawrence, C. Brukner, A. Zeilinger, Mutually unbiased binary observable sets on \(n\) qubits. Phys. Rev. A 65, 032320 (2002). https://doi.org/10.1103/PhysRevA.65.032320

  20. J.L. Romero, G. Björk, A.B. Klimov, L.L. Sánchez-Soto, On the structure of the sets of mutually unbiased bases for \(n\) qubits. Phys. Rev. A 72, 062310 (2005). https://doi.org/10.1103/PhysRevA.72.062310

    Article  ADS  Google Scholar 

  21. H. Zhu, Quantum state estimation and symmetric informationally complete POMs. Ph.D. thesis, National University of Singapore (2012). http://scholarbank.nus.edu.sg/bitstream/handle/10635/35247/ZhuHJthesis.pdf

  22. B.C. Stacey, Sporadic SICs and the normed division algebras. Found. Phys. 47, 1060–64 (2017). https://doi.org/10.1007/s10701-017-0087-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. W.K. Wootters, B.D. Fields, Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–81 (1989). https://doi.org/10.1016/0003-4916(89)90322-9

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Zhu, M. Hayashi, L. Chen, Coherence and entanglement measures based on Rényi relative entropies. J. Phys. A 50, 475303 (2017). https://doi.org/10.1088/1751-8121/aa8ffc

    Article  ADS  MathSciNet  Google Scholar 

  25. R.W. Spekkens, Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75(3), 032110 (2007). https://doi.org/10.1103/PhysRevA.75.032110

    Article  ADS  Google Scholar 

  26. R.W. Spekkens, Quasi-quantization: classical statistical theories with an epistemic restriction, in Quantum Theory: Informational Foundations and Foils, eds. by G. Chiribella, R.W. Spekkens (eds.) (Springer, Berlin, 2016), pp. 83–135. https://doi.org/10.1007/978-94-017-7303-4_4

  27. R.W. Spekkens, Reassessing claims of nonclassicality for quantum interference phenomena (2016). http://pirsa.org/16060102/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake C. Stacey .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stacey, B.C. (2021). Geometry and Information Theory for Qubits and Qutrits. In: A First Course in the Sporadic SICs. SpringerBriefs in Mathematical Physics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-76104-2_3

Download citation

Publish with us

Policies and ethics