Skip to main content

Nanoparticles in Construction Industry and Their Toxicity

  • 1072 Accesses

Abstract

Nanoparticles (NPs) are ultrafine particles having size between 1 to 100 nm. For a few decades, the researchers have explored wide scientific applications of NPs in medicine, electronics, construction, manufacturing and in insulating materials. The benefits of using NPs in construction materials are huge; the NPs can modify the physical, thermal, antimicrobial, self-cleaning and self-sensing, and self-healing and chemical properties of construction materials. NPs such as titanium dioxide, carbon nanotubes, clay and aluminium dioxide are widely used in construction materials. The NPs used in the construction materials are released to the environment or the workers handling the materials likely to be exposed to the NPs, the exposure can be detrimental to the environment and human health. NPs can enter the human body through skin, via inhalation or ingestion. However, the rate of exposure to NPs can cause serious respiratory, cardiovascular, skin and nerve related diseases. This chapter briefs about the importance of NPs in construction materials/industry together with their adverse effects on environment and human life.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Gawwad HA, Heikal M, Mohammed MS, Abd El-Aleem S, Hassan HS, Vásquez García SR, Rashad AM (2019) Evaluating the impact of nano-magnesium calcite waste on the performance of cement mortar in normal and sulfate-rich media. Constr Build Mater 203:392–400

    Google Scholar 

  • Abo-El-Enein SA, Amin MS, El-Hosiny FI, Hanafi S, ElSokkary TM, Hazem MM (2014) Pozzolanic and hydraulic activity of nano-metakaolin. HBRC J 10:64–72

    Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Google Scholar 

  • Agudelo-Castañeda DM, Teixeira EC, Schneider IL, Lara SR, Silva LFO (2017) Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ Pollut 224:158–170

    Google Scholar 

  • Akhtar A, Sarmah AK (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J Clean Prod 186:262–281

    Google Scholar 

  • Attik G, Brown R, Jackson P, Creutzenberg O, Aboukhamis I, Rihn BH (2008) Internalization, cytotoxicity, apoptosis, and tumor necrosis factor-alpha expression in rat alveolar macrophages exposed to various dusts occurring in the ceramics industry. InhalToxicol 20:1101–1112

    Google Scholar 

  • Aziz H, Ahmad F (2016) Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Prog Org Coat 101:431–439

    Google Scholar 

  • Blaise C, Gagné F, Férard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598

    Google Scholar 

  • Cha KE, Myung H (2007) Cytotoxic effects of nanoparticles assessed in vitro and in vivo. J Microbiol Biotechnol 17:1573–1578

    Google Scholar 

  • Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417

    Google Scholar 

  • Chen KL, Elimelech M (2006a) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006b) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Google Scholar 

  • Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464

    Google Scholar 

  • Farzadnia N, Ali AAA, Demirboga R, Anwar MP (2013) Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem Concr Res 48:97–104

    Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    Google Scholar 

  • Gálvez-Martos J-L, Styles D, Schoenberger H, Zeschmar-Lahl B (2018) Construction and demolition waste best management practice in Europe. Resour Conserv Recycl 136:166–178

    Google Scholar 

  • Ge Z, Gao Z (2008) Applications of nanotechnology and nanomaterials in construction. In: First international conference construct developed countries, 235–240

    Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17:396–409

    Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, World Health Organization (1997) Silica, some silicates. World Health Organization, Coal Dust and Para-aramid Fibrils

    Google Scholar 

  • Irie H, Sunada K, Hashimoto K (2004) Recent developments in TiO2 photocatalysis: novel applications to interior ecology materials and energy saving systems. Electrochemistry 72:807–812

    Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Google Scholar 

  • Kandlikar M, Ramachandran G, Maynard A, Murdock B, Toscano WA (2007) Health risk assessment for nanoparticles: a case for using expert judgment. Nanotechnol Occup Health 137–156

    Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Google Scholar 

  • Kartam N, Al-Mutairi N, Al-Ghusain I, Al-Humoud J (2004) Environmental management of construction and demolition waste in Kuwait. Waste Manag 24:1049–1059

    Google Scholar 

  • Khitab A (2016) Advanced research on nanotechnology for civil engineering applications. IGI Global

    Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Google Scholar 

  • Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Google Scholar 

  • Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement Concr Compos 32:110–115

    Google Scholar 

  • Kourmpanis B, Papadopoulos A, Moustakas K, Stylianou M, Haralambous KJ, Loizidou M (2008) Preliminary study for the management of construction and demolition waste. Waste Manag Res 26:267–275

    Google Scholar 

  • Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Google Scholar 

  • Lam C-W, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Google Scholar 

  • Lee HA, Imran M, Monteiro-Riviere NA, Colvin VL, Yu WW, Riviere JE (2007) Biodistribution of quantum dot nanoparticles in perfused skin: evidence of coating dependency and periodicity in arterial extraction. Nano Lett 7:2865–2870

    Google Scholar 

  • Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Google Scholar 

  • Lin P, Chen J-W, Chang LW, Wu J-P, Redding L, Chang H, Yeh T-K, Yang CS, Tsai M-H, Wang H-J, Kuo Y-C, Yang RSH (2008) Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice. Environ Sci Technol 42:6264–6270

    Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352

    Google Scholar 

  • Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Google Scholar 

  • Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24:5445–5452

    Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez BJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366

    Google Scholar 

  • Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430

    Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Google Scholar 

  • Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul Kadir A (2019a) Nanoparticles in Construction materials and other applications, and implications of nanoparticle use. Materials 12. https://doi.org/10.3390/ma12193052

  • Mohajerani A, Suter D, Jeffrey-Bailey T, Song T, Arulrajah A, Horpibulsuk S, Law D (2019b) Recycling waste materials in geopolymer concrete. Clean Technol Environ Policy 21:493–515

    Google Scholar 

  • Mohajerani A, Kadir AA, Larobina L (2016) A practical proposal for solving the world’s cigarette butt problem: recycling in fired clay bricks. Waste Manage 52:228–244

    Google Scholar 

  • Mohseni E, Miyandehi BM, Yang J, Yazdi MA (2015) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Constr Build Mater 84:331–340

    Google Scholar 

  • Mubaraki M, Ali SIA, Ismail A, Yusoff NIM (2016) Rheological evaluation of asphalt cements modified with ASA polymer and Al2O3 nanoparticles. Procedia Eng 143:1276–1284

    Google Scholar 

  • Narayan RJ, Berry CJ, Brigmon RL (2005) Structural and biological properties of carbon nanotube composite films. Mater Sci Eng, B 123:123–129

    Google Scholar 

  • Nations U, United Nations (2014) World urbanization prospects. Statistical Papers—United Nations (Series A), Population and vital statistics report

    Google Scholar 

  • Nazari A, Riahi S (2011) Retracted: Al2O3 nanoparticles in concrete and different curing media. Energy Build 43:1480–1488

    Google Scholar 

  • Niroumand H, Zain MFM, Alhosseini SN (2013) The Influence of nano-clays on compressive strength of earth bricks as sustainable materials. Procedia Soc Behav Sci 89:862–865

    Google Scholar 

  • Noorvand H, Ali AAA, Demirboga R, Farzadnia N, Noorvand H (2013) Incorporation of nano TiO2 in black rice husk ash mortars. Constr Build Mater 47:1350–1361

    Google Scholar 

  • O’Brien N, Cummins E (2008) Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns. Hum Ecol Risk Assess Int J 14:568–592

    Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Google Scholar 

  • Oberdörster G, Celine RM, Ferin J, Weiss B (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhalation Toxicol 7:111–124

    Google Scholar 

  • Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn E-K, Lim Y, Lee K-H (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. InhalToxicol 19(Suppl 1):59–65

    Google Scholar 

  • Poon CS (2007) Management of construction and demolition waste. Waste Manage 27:159–160

    Google Scholar 

  • Rahman MT, Hainin MR, Wan WA (2017) Use of waste cooking oil, tire rubber powder and palm oil fuel ash in partial replacement of bitumen. Constr Build Mater 150:95–104

    Google Scholar 

  • Rashad AM (2013) A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials—a short guide for civil engineer. Mater Des 1980–2015(52):143–157

    Google Scholar 

  • Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res/fundam Mol Mech Mutagen 640:113–122

    Google Scholar 

  • Ribeiro MCS, Pereira CMC, Sousa SPB, Nóvoa PRO, Ferreira AJM (2013) Fire reaction and mechanical performance analyses of polymer concrete materials modified with micro and nano alumina particles. Restor Build Monum 19:195–202

    Google Scholar 

  • Ribeiro MCS, Sousa SPB, Nóvoa PRO (2015) An investigation on fire and flexural mechanical behaviors of nano and micro polyester composites filled with SiO2 and Al2O3 particles. Mater Today: Proc 2:8–19

    Google Scholar 

  • Rincón A-G, Pulgarin C (2004) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B 49:99–112

    Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Google Scholar 

  • Salemi N, Behfarnia K (2013) Effect of nano-particles on durability of fiber-reinforced concrete pavement. Constr Build Mater 48:934–941

    Google Scholar 

  • Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24:2060–2071

    Google Scholar 

  • Sarkar D, Pal M, Sarkar A (2014) Laboratory evaluation of asphalt concrete prepared with over burnt brick aggregate treated by zycosoil. Int J Civ Environ Struct Constr Archit Eng 8:1302–1306

    Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K-I, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675

    Google Scholar 

  • Silvestre J, Silvestre N, de Brito J (2016) Review on concrete nanotechnology. Eur J Environ Civ Eng 20:455–485

    Google Scholar 

  • Stefanidou M, Karouzo A (2016) Testing the effectiveness of protective coatings on traditional bricks. Constr Build Mater 111:482–487

    Google Scholar 

  • Tiwari AK, Chowdhury S (2013) An overview of application of nanotechnology in construction materials. In: Proceedings of the international symposium on engineering under uncertainty: safety assessment and management (ISEUSAM—2012) pp 483–492

    Google Scholar 

  • Tixier G, Lafont M, Grapentine L, Rochfort Q, Marsalek J (2011) Ecological risk assessment of urban stormwater ponds: Literature review and proposal of a new conceptual approach providing ecological quality goals and the associated bioassessment tools. Ecol Ind 11:1497–1506

    Google Scholar 

  • Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ (2007) Biological properties of carbon nanotubes. J NanosciNanotechnol 7:1284–1297

    Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Google Scholar 

  • Wolfrum EJ, Huang J, Blake DM, Maness P-C, Huang Z, Feist J, Jacoby WA (2002) Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ Sci Technol 36:3412–3419

    Google Scholar 

  • Xing B, Vecitis CD, Senesi N (2016) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity

    Google Scholar 

  • Yan L, Xu Z, Wang X (2017) Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog Org Coat 112:319–329

    Google Scholar 

  • Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879

    Google Scholar 

  • Zhang HL, Su MM, Zhao SF, Zhang YP, Zhang ZP (2016) High and low temperature properties of nano-particles/polymer modified asphalt. Constr Build Mater 114:323–332

    Google Scholar 

  • Zhang Q, Kusaka Y, Sato K, Mo Y, Fukuda M, Donaldson K (1998) Toxicity of ultrafine nickel particles in lungs after intratracheal instillation. J Occup Health 40:171–176

    Google Scholar 

  • Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction. Mater Struct 37:649–658

    Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santhosh, G., Nayaka, G.P. (2022). Nanoparticles in Construction Industry and Their Toxicity. In: Malik, J.A., Marathe, S. (eds) Ecological and Health Effects of Building Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-76073-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76073-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76072-4

  • Online ISBN: 978-3-030-76073-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics