Skip to main content

Polymeric Nanocomposite Membranes for Water Filtration

  • Chapter
  • First Online:
Water Safety, Security and Sustainability

Abstract

The entire world is facing with a severe dilemma of water pollution which is mainly concerned with the chemical and biological contaminants that have endangered the quality of drinking water. The Membrane separation technology is vastly acknowledged as an advanced process for water filtration and purification, having the potential to alleviate global matter of contention of freshwater scarcity. Various nanofillers have been used by many in water purification. This methodology has been accepted as feasible and active to produce a multifunctional nanocomposite membrane i.e. membranes with higher performance along with their synergistic effects of organic polymer matrix and inorganic nanomaterials for water and wastewater treatment. Recently, inorganic nanofillers such as inorganic metal oxides (SiO2, TiO2, ZnO, Ag, etc.), carbon based (CNT, GO) and mixed nanoparticles (SiO2-TiO2, GO-TiO2, GO-SiO2, etc.) have been extensively used to prepare polyvinylidene fluoride (PVDF) nanocomposite membranes with desired properties for water purification. This review aims to highlight the performance of nanofiller incorporated PVDF membranes and the novel strategies explored for fabrication of the PVDF nanocomposite membrane to cater to the current requirements and expectations of water purification performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geise GM, Lee H-S, Miller DJ, Freeman BD, McGrath JE, Paul DR (2010) Water purification by membranes: the role of polymer science. J Polym Sci Part B Polym Phys 48(15):1685–1718

    Article  CAS  Google Scholar 

  2. Ghosh AK, Hoek EMV (2009) Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J Membr Sci 336(1–2):140–148

    Google Scholar 

  3. Hegab HM, Zou L (2015) Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci 484:95–106

    Article  CAS  Google Scholar 

  4. Li X, Janke A, Formanek P, Fery A, Stamm M, Tripathi BP (2018) One pot preparation of polysulfone-amino functionalized SiO2 nanoparticle ultrafiltration membranes for water purification. J Environ Chem Eng 6(4):4598–4604

    Article  CAS  Google Scholar 

  5. McCloskey BD, Park HB, Ju H, Rowe BW, Miller DJ, Freeman BD (2012) A bioinspired fouling-resistant surface modification for water purification membranes. J Membr Sci 413:82–90

    Google Scholar 

  6. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43(3):715–723

    Article  CAS  Google Scholar 

  7. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1(5):1–15

    Article  CAS  Google Scholar 

  8. Esfahani MR, Tyler JL, Stretz HA, Wells MJM (2015) Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination 372:47–56

    Google Scholar 

  9. Ramanan SN, Shahkaramipour N, Tran T, Zhu L, Venna SR, Lim C-K, Singh A, Prasad PN, Lin H (2018) Self-cleaning membranes for water purification by co-deposition of photo-mobile 4, 4′-azodianiline and bio-adhesive polydopamine. J Membr Sci 554:164–174

    Google Scholar 

  10. Yin J, Kim E-S, Yang J, Deng B (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membr Sci 423:238–246

    Article  CAS  Google Scholar 

  11. Yoon K, Hsiao BS, Chu B (2009) Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes. Polymer 50(13):2893–2899

    Article  CAS  Google Scholar 

  12. Zhang L, Shan C, Jiang X, Li X, Liangmin Yu (2018) High hydrophilic antifouling membrane modified with capsaicin-mimic moieties via microwave assistance (MWA) for efficient water purification. Chem Eng J 338:688–699

    Article  CAS  Google Scholar 

  13. Yoon K, Hsiao BS, Chu B (2009) High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating. J Membr Sci 338(1–2):145–152

    Article  CAS  Google Scholar 

  14. Cadotte J, Forester R, Kim M, Petersen R, Stocker T (1988) Nanofiltration membranes broaden the use of membrane separation technology. Desalination 70(1–3):77–88

    Article  CAS  Google Scholar 

  15. Kang G-d, Cao Y-m (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46(3):584–600

    Article  CAS  Google Scholar 

  16. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18(7):562–568

    Google Scholar 

  17. Tan Z, Chen S, Peng X, Zhang L, Gao C (2018) Polyamide membranes with nanoscale turing structures for water purification. Science 360(6388):518–521

    Article  CAS  Google Scholar 

  18. Nouri M, Marjani A, Tajdari M, Heidary F, Salimi M (2018) Preparation of cellulose acetate membrane coated by PVA/Fe3O4 nanocomposite thin film: an in situ procedure. Colloid Polym Sci 296(7):1213–1223

    Article  CAS  Google Scholar 

  19. Bhanthumnavin W, Wanichapichart P, Taweepreeda W, Sirijarukula S, Paosawatyanyong B (2016) Surface modification of bacterial cellulose membrane by oxygen plasma treatment. Surf Coat Technol 306:272–278

    Article  CAS  Google Scholar 

  20. Chou W-L, Da-Guang Yu, Yang M-C (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607

    Article  CAS  Google Scholar 

  21. Reuvers AJ, Van den Berg JWA, Smolders C (1987) Formation of membranes by means of immersion precipitation: part I. A model to describe mass transfer during immersion precipitation. J Membr Sci 34(1):45–65

    Google Scholar 

  22. Rahimpour A, Madaeni S (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci 305(1–2):299–312

    Article  CAS  Google Scholar 

  23. Saljoughi E, Sadrzadeh M, Mohammadi T (2009) Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. J Membr Sci 326(2):627–634

    Article  CAS  Google Scholar 

  24. Kusworo TD, Wibowo AI, Harjanto GD, Yudisthira AD, Iswanto FB (2014) Cellulose acetate membrane with improved perm-selectivity through modification dope composition and solvent evaporation for water softening. Res J Appl Sci Eng Technol 7(18):3852–3859

    Article  CAS  Google Scholar 

  25. Worthley CH, Constantopoulos KT, Ginic-Markovic M, Pillar RJ, Matisons JG, Clarke S (2011) Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. J Membr Sci 385:30–39

    Article  CAS  Google Scholar 

  26. Gao A, Liu F, Xue L (2014) Preparation and evaluation of heparin-immobilized poly (lactic acid)(PLA) membrane for hemodialysis. J Membr Sci 452:390–399

    Article  CAS  Google Scholar 

  27. Ma H, WenXin S, Tai Z, Sun D, Yan X, Liu B, Xue Q (2012) “Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin Sci Bull 57(23):3051–3058

    Article  CAS  Google Scholar 

  28. Svang-Ariyaskul A, Huang RYM, Douglas PL, Pal R, Feng X, Chen P, Liu L (2006) Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. J Membr Sci 280(1–2):815–823

    Article  CAS  Google Scholar 

  29. Zhu L-P, Jing-Zhen Yu, You-Yi X, Xi Zhen-Yu, Zhu B-K (2009) Surface modification of PVDF porous membranes via poly (DOPA) coating and heparin immobilization. Colloids Surf B 69(1):152–155

    Article  CAS  Google Scholar 

  30. Liu F, Awanis Hashim N, Liu Y, Moghareh Abed MR, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1–2):1–27

    Google Scholar 

  31. Zhang M, Nguyen QT, Ping Z (2009) Hydrophilic modification of poly (vinylidene fluoride) microporous membrane. J Membr Sci 327(1–2):78–86

    Google Scholar 

  32. Khayet M, Matsuura T (2001) Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation. Ind Eng Chem Res 40(24):5710–5718

    Article  CAS  Google Scholar 

  33. Tomaszewska M (1996) Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation. Desalination 104:1–11

    Article  CAS  Google Scholar 

  34. Sukitpaneenit P, Chung TS (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Membr Sci 340(1–2):192–205

    Article  CAS  Google Scholar 

  35. Zhai Y, Wang N, Mao X, Si Y, Jianyong Yu, Al-Deyab SS, El-Newehy M, Ding B (2014) Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A2(35):14511–14518

    Article  CAS  Google Scholar 

  36. Hou D, Dai G, Wang J, Fan H, Zhang L, Luan Z (2012) Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation. Sep Purif Technol 101:1–10

    Article  CAS  Google Scholar 

  37. Wang YK, Chung TS, Gryta M (2008) Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chem Eng Sci 63:2587–2594

    Article  CAS  Google Scholar 

  38. Bonyadi S, Chung T-S (2009) Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach. J Membr Sci 331(1–2):66–74

    Article  CAS  Google Scholar 

  39. Bonyadi S, Chung TS (2007) Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. J Membr Sci 306(1–2):134–146

    Google Scholar 

  40. Edwie F, Teoh MM, Chung T-S (2012) Effects of additives on dual-layer hydrophobic–hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance. Chem Eng Sci 68(1):567–578

    Google Scholar 

  41. Fan H, Peng Y (2012) Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chem Eng Sci 79:94–102

    Google Scholar 

  42. Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253(4):2003–2010

    Google Scholar 

  43. Dong C, He G, Li H, Zhao R, Han Y, Deng Y (2012) Antifouling enhancement of poly (vinylidene fluoride) microfiltration membrane by adding Mg (OH)2 nanoparticles. J Membr Sci 387:40–47

    Google Scholar 

  44. Yu LY, Xu ZL, Shen HM, Yang H (2009) Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J Membr Sci 337:257–265

    Article  CAS  Google Scholar 

  45. Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345(1–2):13–20

    Google Scholar 

  46. Wang P, Ma J, Wang Z, Shi F, Liu Q (2012) Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 28(10):4776–4786

    Google Scholar 

  47. Wei X, Wang Z, Wang J, Wang S (2012) A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite. Membr Water Treat 3(1):35–49

    Google Scholar 

  48. Chiang Y-C, Chang Y, Higuchi A, Chen W-Y, Ruaan R-C (2009) Sulfobetaine-grafted poly (vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J Membr Sci 339(1–2):151–159

    Article  CAS  Google Scholar 

  49. Qu X, Brame J, Li Q, Alvarez PJJ (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Google Scholar 

  50. Ying Y, Ying W, Li Q, Meng D, Ren G, Yan R, Peng X (2017) Recent advances of nanomaterial-based membrane for water purification. Appl Mater Today 7:144–158

    Google Scholar 

  51. Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378(1–2):73–84

    Google Scholar 

  52. Shi F, Ma Y, Ma J, Wang P, Sun W (2013) Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J Membr Sci 427:259–269

    Article  CAS  Google Scholar 

  53. Zhang S, Wang R, Zhang S, Li G, Zhang Y (2014) Treatment of wastewater containing oil using phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride (PVDF) composite membrane. Desalination 332(1):109–116

    Article  CAS  Google Scholar 

  54. Yu L‐Y, Shen H‐M, Xu Z‐L (2009) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Polym Sci 113(3):1763–1772

    Google Scholar 

  55. Chae S-R, Hotze EM, Wiesner MR (2014) Possible applications of fullerene nanomaterials in water treatment and reuse. Nanotechnology applications for clean water. William Andrew Publishing, pp 329–338

    Google Scholar 

  56. Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS (2014) Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev 43(4):311–338

    Google Scholar 

  57. Zhang X, Pan B, Yang K, Zhang D, Hou J (2010) Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. J Environ Sci Health Part A 45(12):1625–1634

    Google Scholar 

  58. Lu C, Su F (2007) Adsorption of natural organic matter by carbon nanotubes. Sep Purif Technol 58(1):113–121

    Google Scholar 

  59. Wu H, Tang B, Wu P (2010) Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J Membr Sci 362(1–2):374–383

    Google Scholar 

  60. Ajmani GS, Goodwin D, Marsh K, Howard Fairbrother D, Schwab KJ, Jacangelo JG, Huang H (2012) Modification of low pressure membranes with carbon nanotube layers for fouling control. Water Res 46(17):5645–5654

    Google Scholar 

  61. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067):442–444

    Google Scholar 

  62. Zhao C, Xu X, Chen J, Yang F (2013) Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J Environ Chem Eng 1(3):349–354

    Google Scholar 

  63. Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14

    Article  CAS  Google Scholar 

  64. Madaeni SS, Zinadini S, Vatanpour V (2013) Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep Purif Technol 111:98–107

    Google Scholar 

  65. Gethard K, Sae-Khow O, Mitra S (2011) Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl Mater Interfaces 3(2):110–114

    Google Scholar 

  66. Silva TLS, Morales-Torres S, Figueiredo JL, Silva AMT (2015) Multi-walled carbon nanotube/PVDF blended membranes with sponge-and finger-like pores for direct contact membrane distillation. Desalination 357:233–245

    Google Scholar 

  67. Wang Y, Zhu J, Huang H, Cho H-H (2015) Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: Capabilities and potential mechanisms. J Membr Sci 479:165–174

    Article  CAS  Google Scholar 

  68. Ma J, Zhao Y, Zhiwei X, Min C, Zhou B, Li Y, Li B, Niu J (2013) Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 320:1–9

    Article  CAS  Google Scholar 

  69. Zhao X, Ma J, Wang Z, Wen G, Jiang J, Shi F, Sheng L (2012) Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane. Desalination 303:29–38

    Article  CAS  Google Scholar 

  70. Wang Z, Hairong Yu, Xia J, Zhang F, Li F, Xia Y, Li Y (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54

    Article  CAS  Google Scholar 

  71. Chang X, Wang Z, Quan S, Yanchao X, Jiang Z, Shao L (2014) Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly (vinylylidenefluoride)(PVDF) ultrafiltration membrane performance. Appl Surf Sci 316:537–548

    Article  CAS  Google Scholar 

  72. Zhao C, Xiaochen X, Chen J, Wang G, Yang F (2014) Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340:59–66

    Article  CAS  Google Scholar 

  73. Xu T, Xie CS (2003) Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog Org Coat 46(4):297–301

    Article  CAS  Google Scholar 

  74. Vigneshwaran N, Kumar S, Kathe AA, Varadarajan PV, Prasad V (2006) Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17(20):5087

    Google Scholar 

  75. Zhang C-H, Huang Y-D, Yuan W-J, Zhang J-N (2011) UV aging resistance properties of PBO fiber coated with nano-ZnO hybrid sizing. J Appl Polym Sci 120(4):2468–2476

    Article  CAS  Google Scholar 

  76. Liang S, Xiao K, Mo, Y, Huang, X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Memb Sci 394–395, 184–192

    Google Scholar 

  77. Enesca A, Isac L, Duta A (2013) Hybrid structure comprised of SnO2, ZnO and Cu2S thin film semiconductors with controlled optoelectric and photocatalytic properties. Thin Solid Films 542:31–37

    Google Scholar 

  78. Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82(2–3):55–120

    Google Scholar 

  79. Wang L, Zheng Y, Li X, Dong W, Tang W, Chen B, Li C, Li X, Zhang T, Xu W (2011) Nanostructured porous ZnO film with enhanced photocatalytic activity. Thin Solid Films 519(16):5673–5678

    Google Scholar 

  80. Zhou X, Guo X, Ding W, Chen Y (2008) Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders. Appl Surf Sci 255(5):3371–3374

    Article  CAS  Google Scholar 

  81. Kwak G, Seol M, Tak Y, Yong K (2009) Superhydrophobic ZnO nanowire surface: chemical modification and effects of UV irradiation. J Phys Chem C 113(28):12085–12089

    Article  CAS  Google Scholar 

  82. Bottino A, Camera-Roda G, Capannelli G, Munari S (1991) The formation of microporous polyvinylidene difluoride membranes by phase separation. J Membr Sci 57(1):1–20

    Article  CAS  Google Scholar 

  83. Xin Y, Fujimoto T, Uyama H (2012) Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer 53(14):2847–2853

    Article  CAS  Google Scholar 

  84. Susanto H, Ulbricht M (2009) Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J Membr Sci 327(1–2):125–135

    Article  CAS  Google Scholar 

  85. Tang E, Cheng G, Ma X (2006) Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol 161(3):209–214

    Article  CAS  Google Scholar 

  86. Hong J, He Y (2012) Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination 302:71–79

    Article  CAS  Google Scholar 

  87. Zhang X, Wang Y, Liu Y, Junli X, Han Y, Xinxin X (2014) Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl Surf Sci 316:333–340

    Article  CAS  Google Scholar 

  88. Khan SA, Noreen F, Kanwal S, Hussain G (2017) Comparative synthesis, characterization of Cu-doped ZnO nanoparticles and their antioxidant, antibacterial, antifungal and photocatalytic dye degradation activities. Dig J Nanomater Biostruct 12(3):877–889

    Google Scholar 

  89. Dong C, Cairney J, Sun Q, Maddan OL, He G, Deng Y (2010) Investigation of Mg (OH) 2 nanoparticles as an antibacterial agent. J Nanoparticle Res 12(6):2101–2109

    Google Scholar 

  90. Dong C, He G, Li H, Zhao R, Han Y, Deng Y (2012) Antifouling enhancement of poly (vinylidene fluoride) microfiltration membrane by adding Mg (OH) 2 nanoparticles. J Membr Sci 387:40–47

    Article  CAS  Google Scholar 

  91. Dong C, Song D, Cairney J, Maddan OL, He G, Deng Y (2011) Antibacterial study of Mg (OH) 2 nanoplatelets. Mater Res Bull 46(4):576–582

    Google Scholar 

  92. Huang Z-Q, Chen K, Li S-N, Yin X-T, Zhang Z, Xu H-T (2008) “Effect of ferrosoferric oxide content on the performances of polysulfone–ferrosoferric oxide ultrafiltration membranes. J Membr Sci 315(1–2):164–171

    Article  CAS  Google Scholar 

  93. Genne I, Kuypers S, Leysen R (1996) Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci 113(2):343–350

    Article  CAS  Google Scholar 

  94. Zhang Y, Li H, Lin J, Li R, Liang X (2006) Preparation and characterization of zirconium oxide particles filled acrylonitrile-methyl acrylate-sodium sulfonate acrylate copolymer hybrid membranes. Desalination 192(1–3):198–206

    Article  CAS  Google Scholar 

  95. Wu C, Zhang S, Liu C, Yang D, Jian X (2008) Preparation, characterization and performance of thermal stable poly (phthalazinone ether amide) UF membranes. J Membr Sci 311(1–2):360–370

    Article  CAS  Google Scholar 

  96. Ma J, Wang Z, Pan M, Guo Y (2009) A study on the multifunction of ferrous chloride in the formation of poly (vinylidene fluoride) ultrafiltration membranes. J Membr Sci 341(1–2):214–224

    Article  CAS  Google Scholar 

  97. Yan L, Hong S, Li M, Li YS (2009) Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep Purif Technol 66(2):347–352

    Google Scholar 

  98. Yan L, Li YS, Xiang CB (2005) Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 46(18):7701–7706

    Google Scholar 

  99. Liu F, Moghareh Abed MR, Li K (2011) Preparation and characterization of poly (vinylidene fluoride)(PVDF) based ultrafiltration membranes using nano γ-Al2O3. J Membr Sci 366(1–2):97–103

    Google Scholar 

  100. Li X, Pang R, Li J, Sun X, Shen J, Han W, Wang L (2013) In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling. Desalination 324:48–56

    Article  CAS  Google Scholar 

  101. Shi H, Liu F, Xue L, Huafeng L, Zhou Q (2014) Enhancing antibacterial performances of PVDF hollow fibers by embedding Ag-loaded zeolites on the membrane outer layer via co-extruding technique. Compos Sci Technol 96:1–6

    Article  CAS  Google Scholar 

  102. Shi H, Liu F, Xue L (2013) Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites. J Membr Sci 437:205–215

    Article  CAS  Google Scholar 

  103. Choi H, Sofranko AC, Dionysiou DD (2006) Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction. Adv Funct Mater 16(8):1067–1074

    Article  CAS  Google Scholar 

  104. Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380(1–2):155–162

    Article  CAS  Google Scholar 

  105. Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345(1–2):13-20

    Google Scholar 

  106. Mohd Yatim NS, Boon Seng O (2016) Performance of chemically modified TiO2-poly (vinylidene fluoride) DCMD for nutrient isolation and its antifouling properties. J Membr Sci Res 2(4):163–168

    Google Scholar 

  107. Farner Budarz J, Turolla A, Piasecki AF, Bottero J-Y, Antonelli M, Wiesner MR (2017) Influence of aqueous inorganic anions on the reactivity of nanoparticles in TiO2 photocatalysis. Langmuir 33(11):2770–2779

    Google Scholar 

  108. Long M, Brame J, Qin F, Bao J, Li Q, Alvarez PJJ (2017) Phosphate changes effect of humic acids on TiO2 photocatalysis: from inhibition to mitigation of electron–hole recombination. Environ Sci Technol 51(1):514–521

    Google Scholar 

  109. Vequizo JJM, Matsunaga H, Ishiku T, Kamimura S, Ohno T, Yamakata A (2017) Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal 7(4):2644–2651

    Google Scholar 

  110. Lee JH, Kang M, Choung S-J, Ogino K, Miyata S, Kim M-S, Park J-Y, Kim J-B (2004) The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia. Water Res 38(3):713–719

    Google Scholar 

  111. Matthews RW (1987) Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase. Solar Energy 38(6):405–413

    Google Scholar 

  112. Necula BS, Lidy EF, Sebastian AJ, Zaat IA, Jurek D (2009) In vitro antibacterial activity of porous TiO2–Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater 5(9):3573–3580

    Article  CAS  Google Scholar 

  113. Gao M, Zhu L, Ong WL, Wang J, Ho GW (2015) Structural design of TiO 2-based photocatalyst for H 2 production and degradation applications. Catal Sci Technol 5(10):4703–4726

    Google Scholar 

  114. Tavakolmoghadam M, Mohammadi T, Hemmati M (2016) Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents. Membr Water Treat 7(5):377–401

    Article  Google Scholar 

  115. Méricq J-P, Mendret J, Brosillon S, Faur CJCES (2015) High performance PVDF-TiO2 membranes for water treatment. Chem Eng Sci 123:283–291

    Google Scholar 

  116. Zhang W, Zhang Y, Fan R, Lewis R (2016) A facile TiO2/PVDF composite membrane synthesis and their application in water purification. J Nanoparticle Res 18(1):31

    Article  CAS  Google Scholar 

  117. Huang X, Zhang J, Wang W, Liu Y, Zhang Z, Li L, Fan W (2015) Effects of PVDF/SiO2 hybrid ultrafiltration membranes by sol–gel method for the concentration of fennel oil in herbal water extract. RSC Adv 5(24):18258–18266

    Article  CAS  Google Scholar 

  118. Hashim NA, Liu Y, Li K (2011) Preparation of PVDF hollow fiber membranes using SiO2 particles: the effect of acid and alkali treatment on the membrane performances. Ind Eng Chem Res 50(5):3035–3040

    Google Scholar 

  119. Wu H, Mansouri J, Chen V (2013) Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes. J Membr Sci 433:135–151

    Article  CAS  Google Scholar 

  120. Wang H, Zhao X, He C (2016) Enhanced antifouling performance of hybrid PVDF ultrafiltration membrane with the dual-mode SiO2-g-PDMS nanoparticles. Sep Purif Technol 166:1–8

    Article  CAS  Google Scholar 

  121. Park SY, Chung JW, Chae YK, Kwak S-Y (2013) Amphiphilic thiol functional linker mediated sustainable anti-biofouling ultrafiltration nanocomposite comprising a silver nanoparticles and poly (vinylidene fluoride) membrane. ACS Appl Mater Interfaces 5(21):10705–10714

    Google Scholar 

  122. Li J-H, Shao X-S, Zhou Q, Li M-Z, Zhang Q-Q (2013) The double effects of silver nanoparticles on the PVDF membrane: surface hydrophilicity and antifouling performance. Appl Surf Sci 265:663–670

    Google Scholar 

  123. Alpatova A, Meshref M, McPhedran KN, El-Din MG (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J Membr Sci 490:227–235

    Google Scholar 

  124. Lijun X, Li Z, Jingyuan C, Junchi L, Ye T, Yingjie Z (2013) Characteristics and preparation of PVDF catalytic membrane modified by nano-TiO2/Fe3+. Open Mater Sci J 7(1)

    Google Scholar 

  125. Bai H, Liu Z, Sun DD (2012) A hierarchically structured and multifunctional membrane for water treatment. Appl Catal B Environ 111:571–577

    Google Scholar 

  126. Takeuchi M, Sakamoto K, Martra G, Coluccia S, Anpo M (2005) Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface. J Phys Chem B 109(32):15422–15428

    Article  CAS  Google Scholar 

  127. Li J-H, Yan B-F, Shao X-S, Wang S-S, Tian H-Y, Zhang Q-Q (2015) Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Appl Surf Sci 324:82–89

    Article  CAS  Google Scholar 

  128. Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22(11):115603

    Google Scholar 

  129. Safarpour M, Khataee A, Vatanpour V (2014) Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind Eng Chem Res 53(34):13370–13382

    Google Scholar 

  130. Xu Z, Tengfei W, Shi J, Teng K, Wang W, Ma M, Li J, Qian X, Li C, Fan J (2016) Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Membr Sci 520:281–293

    Article  CAS  Google Scholar 

  131. Kim E-S, Hwang G, El-Din MG, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394:37–48

    Google Scholar 

  132. Tahir K, Ahmad A, Li B, Nazir S, Ullah Khan A, Nasir T, Khan ZUH, Naz R, Raza M (2016) Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method. J Photochem Photobiol B Biol 162:189–198

    Google Scholar 

  133. Hirakawa T, Kamat PV (2004) Photoinduced electron storage and surface plasmon modulation in Ag@ TiO2 clusters. Langmuir 20(14):5645–5647

    Article  CAS  Google Scholar 

  134. Takai A, Kamat PV (2011) Capture, store, and discharge. Shuttling photogenerated electrons across TiO2–silver interface. ACS nano 5(9):7369–7376

    Google Scholar 

  135. Yang D, Sun Y, Tong Z, Tian Y, Li Y, Jiang Z (2015) Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J Phys Chem C 119(11):5827–5835

    Article  CAS  Google Scholar 

  136. Yao T, Shi L, Wang H, Wang F, Wu J, Zhang X, Sun J, Cui T (2016) A simple method for the preparation of TiO2/Ag‐AgCl@ polypyrrole composite and its enhanced visible‐light photocatalytic activity. Chem Asian J 11(1):141–147

    Google Scholar 

  137. Prakash J, Kumar P, Harris RA, Swart C, Neethling JH, Janse van Vuuren A, Swart HC (2016) Synthesis, characterization and multifunctional properties of plasmonic Ag–TiO2 nanocomposites. Nanotechnology 27(35):355707

    Google Scholar 

  138. Bian J, Yang Q, Fazal R, Li X, Sun N, Jing L (2016) Accepting excited high-energy-level electrons and catalyzing H2 evolution of dual-functional Ag-TiO2 modifier for promoting visible-light photocatalytic activities of nanosized oxides. J Phys Chem C 120(22):11831–11836

    Article  CAS  Google Scholar 

  139. Chen J-J, Wu JCS, Wu PC, Tsai DP (2011) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J Phys Chem C 115(1):210–216

    Google Scholar 

  140. Ren R, Wen Z, Cui S, Hou Y, Guo X, Chen J (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5(1):1–11

    Article  CAS  Google Scholar 

  141. Kulkarni RM, Malladi RS, Hanagadakar MS, Doddamani MR, Bhat UK (2016) Ag-TiO2 nanoparticles for photocatalytic degradation of lomefloxacin. Desalination Water Treat 57(34):16111–16118

    Article  CAS  Google Scholar 

  142. Damodar RA, You S-J, Chou H-H (2009) Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazardous Mater 172(2–3):1321–1328

    Article  CAS  Google Scholar 

  143. Yang GQ, Li ZH, Lin ZX, Wang XX, Liu P, Fu XZ (2005) Investigation of TiO2 photocatalytic degradation of bovine serum albumin. Guang pu xue yu guang pu fen xi Guang pu 25(8):1309–1311

    Google Scholar 

  144. Li Z-K, Lang W-Z, Miao W, Yan X, Guo Y-J (2016) Preparation and properties of PVDF/SiO2@ GO nanohybrid membranes via thermally induced phase separation method. J Membr Sci 511:151–161

    Article  CAS  Google Scholar 

  145. Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13

    Article  CAS  Google Scholar 

  146. Zhu Z, Jiang J, Wang X, Huo X, Yawei X, Li Q, Wang L (2017) Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@ SiO2 particles. Chem Eng J 314:266–276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, J.R., Pradhan, S., Mohanty, S., Nayak, S.K. (2021). Polymeric Nanocomposite Membranes for Water Filtration. In: Vaseashta, A., Maftei, C. (eds) Water Safety, Security and Sustainability. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-76008-3_7

Download citation

Publish with us

Policies and ethics