Skip to main content

Environmental Forensic Tools for Water Resources

  • Chapter
  • First Online:
Water Safety, Security and Sustainability

Abstract

Environmental forensics consists of a set of defensible scientific methods to address histories and sources of contamination in environment and involves the reconstruction of past environmental events, such as the timing, types and amounts, and sources of chemical releases to the environment. Interrogations necessitating environmental forensic applications usually relate to understanding of the extent, duration, and responsibility for environmental contamination sites in a regulatory and/or legal context. These approaches are also integral to due diligence of environmental aspects related to mergers, acquisitions and remediation cost recovery. Techniques such as chemical fingerprinting, chemical fate and transport modeling, hydrogeological investigation, and reconstructing operational histories, among others are at the heart of many investigations. These and newer techniques, such as multivariate receptor statistical modeling, continue to evolve and have become more sophisticated over time, as have the types of problems to which they are applied. Scenarios in which environmental forensics have been applied have ranged from remote Arctic environments to urban sediments. In both extreme scenarios, the chemical condition of the environment—i.e., the background or baseline—is a central part of any investigation. It is upon this background that additional contamination from one or several responsible methods may be juxtaposed. The types of problems to which environmental forensic techniques are commonly applied include: identifying and quantifying contributions from various sources to contaminated sites, distinguishing natural background and diffuse anthropogenic background from specific pollution sources, differentiating specific sources of petroleum and natural gas, delineating time frames of releases, reconstructing historical concentrations and pathways of releases for dose reconstruction in toxic torts, and conducting causal analysis to determine associations between observed conditions and potential sources. A detailed analysis with examples is presented in this chapter to shed more light on this evolving subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaćeša S, Klašnja M (1994) Water and wastewater technology. Yugoslav Brewers Association, Belgrade

    Google Scholar 

  2. Harrison RM (ed.) (2001) Pollution: causes, effects and control. Royal society of chemistry

    Google Scholar 

  3. Horne RA et al. (1977) Chemistry of our environment. Wiley

    Google Scholar 

  4. Veselinović DS et al (1995) Conditions and processes in the environment. University of Belgrade, Faculty of Physical Chemistry

    Google Scholar 

  5. Meydenbauer A (1867) Die Photometrographie. Wochenblatt des Architektenvereins zu Berlin 1(14):125–126

    Google Scholar 

  6. Brilis GM, Gerlach CL, van Waasbergen RJ (2000) Remote sensing tools assist in environmental forensics. Part I: traditional methods. Environ Forensics 1(2):63–67

    Article  Google Scholar 

  7. Brilis GM et al (2001) Remote sensing tools assist in environmental forensics: Part II—Digital tools. Environ Forensics 2(3):223–229

    CAS  Google Scholar 

  8. Falbe AJ, Regitz M (1997) Römpp Lexikon Chemie. Neubearbeitete Auflage 10

    Google Scholar 

  9. Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  10. Goyer R (2004) Issue paper on the human health effects of metals. US Environmental Protection Agency

    Google Scholar 

  11. Kuivenhoven M, Mason K (2019) Arsenic (Arsine) Toxicity. In: Stat Pearls [Internet]. StatPearls Publishing

    Google Scholar 

  12. Sun H, Brocato J, Costa M (2015) Oral chromium exposure and toxicity. Curr Environ Health Rep 2(3):295–303

    Article  CAS  Google Scholar 

  13. Verma A (2018) Forensic aspect of metal poisoning: a review. Int J Res Appl Sci Eng Technol (IJRASET) 6(I)

    Google Scholar 

  14. Brčeski I (2010) Faculty of chemistry. University of Belgrade, unpublished results

    Google Scholar 

  15. Hazrat A, Ezzat K, Ikram I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 6730305. https://doi.org/10.1155/2019/6730305

  16. Adesanya OO et al. (2020) Source identification and human health risk assessment of heavy metals in water sources around bitumen field in Ondo State, Nigeria. Environ Forensics 1–12

    Google Scholar 

  17. Woldeamanuale T, Hassen A (2017) Toxicity study of heavy metals pollutants and physico-chemical characterization of effluents collected from different paint industries in addis Ababa, Ethiopia. J Forensic Sci Criminal Invest 5(5), 001

    Google Scholar 

  18. Sankhla MS et al (2016) Heavy metals contamination in water and their hazardous effect on human health-a review. Int J Curr Microbiol App Sci 5(10):759–766

    Article  CAS  Google Scholar 

  19. Yunus K, Zuraidah MA, John A (2020) A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecofeminism Clim Change

    Google Scholar 

  20. Alves RH, Rietzler AC (2015) Ecotoxicological evaluation of sediments applied to environmental forensic investigation. Brazil J Biol 75(4):886–893

    Article  CAS  Google Scholar 

  21. Sakan S et al (2002) Water quality parameters of the Tisza River. J Environ Protect Ecol 3(4):828–33

    CAS  Google Scholar 

  22. Dimkić M, Keckarević D, Brčeski I, Pavlović D, Papić P, Duduković A, Vrvić MM (1990) The study of degradation of high concentration of pollutants in water on a natural model. Advanced Programme of the Second International ISEP Congress, Vienna (Austria), p 16

    Google Scholar 

  23. Pfendt P Faculty of chemistry. University of Belgrade, unpublished results

    Google Scholar 

  24. Meybeck M (2013) Heavy metal contamination in rivers across the globe: an indicator of complex interactions between societies and catchments. In: Proceedings f H04 understanding freshwater quality problems in a changing world 361: 3–16

    Google Scholar 

  25. Miller JR (2013) Forensic assessment of metal contaminated rivers in the 21st century using geochemical and isotopic tracers. Minerals 3(2):192–246

    Article  CAS  Google Scholar 

  26. Mao G et al (2019) Spatiotemporal variability of heavy metals and identification of potential source tracers in the surface water of the Lhasa River basin. Environ Sci Pollut Res 26(8):7442–7452

    Article  CAS  Google Scholar 

  27. Macklin MG, Klimek K (1992) Dispersal, storage and transformation of metal contaminated alluvium in the upper Vistula basin, southwest Poland. Appl Geogr 12(1):7–30

    Google Scholar 

  28. Wiederhold JG (2015) Metal stable isotope signatures as tracers in environmental geochemistry. Environ Sci Technol 49(5):2606–2624

    Article  CAS  Google Scholar 

  29. Kelemen Z, Gillikin DP, Bouillon S (2019) Relationship between river water chemistry and shell chemistry of two tropical African freshwater bivalve species. Chem Geol 526:130–141

    Article  CAS  Google Scholar 

  30. Morana C et al (2015) Biogeochemistry of a large and deep tropical lake (Lake Kivu, East Africa: insights from a stable isotope study covering an annual cycle. Biogeosciences 12(16):4953–4963

    Article  Google Scholar 

  31. Kelemen Z et al (2017) Calibration of hydroclimate proxies in freshwater bivalve shells from Central and West Africa. Geochim Cosmochim Acta 208:41–62

    Article  CAS  Google Scholar 

  32. Bird G (2011) Provenancing anthropogenic Pb within the fluvial environment: developments and challenges in the use of Pb isotopes. Environ Int 37(4):802–819

    Article  CAS  Google Scholar 

  33. Passmore DG, Macklin MG (1994) Provenance of fine-grained alluvium and late Holocene land-use change in the Tyne basin, northern England. Geomorphology 9(2):127–142

    Article  Google Scholar 

  34. Dunlap CE et al (2008) The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: evidence from lead isotopes in the Sacramento River, California. Geochimica et Cosmochimica Acta 72(24):5935–5948

    Article  CAS  Google Scholar 

  35. Leybourne MI, Cousens BL, Goodfellow WD (2009) Lead isotopes in ground and surface waters: fingerprinting heavy metal sources in mineral exploration. Geochem Explor Environ Anal 9(2):115–123

    Google Scholar 

  36. Kimball BE et al (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73(5):1247–1263

    Article  CAS  Google Scholar 

  37. Bullen TD, Walczyk T (2009) Environmental and biomedical applications of natural metal stable isotope variations. Elements 5(6):381–385

    Article  CAS  Google Scholar 

  38. Weiss DJ, Rehkdmper M, Schoenberg R, McLaughlin M, Kirby J, Campbell PG, Arnold T, Chapman J, Peel K, Gioia AS (2008) Application of nontraditional stable-isotope systems to the study of sources and fate of metals in the environment. Environ Sci Technol 42(3): 655–664

    Google Scholar 

  39. Raddatz AL, Johnson TM, Mcling TL (2011) Cr stable isotopes in Snake River Plain aquifer groundwater: evidence for natural reduction of dissolved Cr (VI). Environ Sci Technol 45(2):502–507

    Article  CAS  Google Scholar 

  40. Yin R, Feng X, Shi W (2010) Application of the stable-isotope system to the study of sources and fate of Hg in the environment: a review. Appl Geochem 25(10):1467–1477

    Article  CAS  Google Scholar 

  41. Sonke JE et al (2010) Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem Geol 279(3-4):90–100

    Article  CAS  Google Scholar 

  42. Sherman LS, Blum JD (2013) Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sci Total Environ 448:163–175

    Article  CAS  Google Scholar 

  43. Banner JL (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth Sci Rev 65(3-4):141–194

    Article  CAS  Google Scholar 

  44. Nakano T (2016) Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies. Proc Japan Acad Ser B 92(6):167–184

    Article  CAS  Google Scholar 

  45. McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6(4):331–358

    Article  Google Scholar 

  46. Négrel P, Petelet-Giraud E, Widory D (2004) Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterization. Hydrol Earth Syst Sci 8(5):959–972

    Article  Google Scholar 

  47. Montgomery J, Evans JA, Wildman G (2006) 87Sr/86Sr isotope composition of bottled British mineral waters for environmental and forensic purposes. Appl Geochem 21(10):1626–1634

    Article  CAS  Google Scholar 

  48. Feng H, Cochran JK, Hirschberg DJ (1999) 234Th and 7Be as tracers for transport and sources of particle-associated contaminants in the Hudson River Estuary. Sci Total Environ 237:401–418

    Google Scholar 

  49. Belyanin D et al. (2019) Sources and accumulation of 7Be, 210Pb and 137Cs isotopes in the annual needles of larch and cedar in Novy Urengoy region (Arctic part of Western Siberia). In: E3S web of conferences. EDP Sciences, p 12002

    Google Scholar 

  50. Piepgras DJ, Wasserburg GJ (1980) Neodymium isotopic variations in seawater. Earth Planetary Sci Letters 50(1):128–138

    Article  CAS  Google Scholar 

  51. Piepgras DJ, Wasserburg GJ, Dasch EJ (1979) The isotopic composition of Nd in different ocean masses. Earth Planetary Sci Letters 45(2):223–236

    Article  CAS  Google Scholar 

  52. Vervoort JD et al. (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planetary Sci Lett 168(1–2):79–99

    Google Scholar 

  53. Colodner D, Sachs J, Ravizza G, Turekian K, Edmond J, Boyle E (1993) The geochemical cycle of rhenium: a reconnaissance. Earth Planetary Sci Letters 117(1–2):205–221

    Article  CAS  Google Scholar 

  54. Levasseur S, Birck J-L, Allègre CJ (1998) Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater. Science 282(5387):272–274

    Google Scholar 

  55. Douthitt CB (2008) The evolution and applications of multicollector ICPMS (MC-ICPMS). Anal Bioanal Chem 390(2):437–440

    Article  CAS  Google Scholar 

  56. Halliday AN et al. (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochimica et Cosmochimica Acta 62(6):919–940

    Google Scholar 

  57. Baxter DC, Rodushkin I, Engström E (2012) Isotope abundance ratio measurements by inductively coupled plasma-sector field mass spectrometry. J Anal At Spectrom 27(9):1355–1381

    Article  CAS  Google Scholar 

  58. Fantle MS, Bullen TD (2009) Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry. Chem Geol 258(1-2):50–64

    Article  CAS  Google Scholar 

  59. Criss RE, Fernandes SA, Winston WE (2001) Isotopic, geochemical and biological tracing of the source of an impacted karst spring, Weldon Spring, Missouri. Environ Forensics 2(1):99–103

    Article  CAS  Google Scholar 

  60. Winograd IJ, Friedman I (1972) Deuterium as a tracer of regional ground-water flow, southern Great Basin, Nevada and California. Geol Soc Am Bull 83(12):3691–3708

    Article  Google Scholar 

  61. Kennedy SK, Walker W, Forslund B (2002) Speciation and characterization of heavy metal-contaminated soils using computer-controlled scanning electron microscopy. Environ Forensics 3(2):131–143

    CAS  Google Scholar 

  62. Glascock MD (2006) An overview of neutron activation analysis. University of Missouri Research Reactor (MURR), Columbia, MO

    Google Scholar 

  63. Zemo DA, Bruya JE, Graf TE (1995) The application of petroleum hydrocarbon fingerprint characterization in site investigation and remediation. Groundwater Monitor Remediation 15(2):147–156

    Article  CAS  Google Scholar 

  64. Morrison RD (2000) Critical review of environmental forensic techniques: Part II. Environ Forensics 1(4):175–195

    Article  CAS  Google Scholar 

  65. Blumer M, Souza GT, Sass J (1970) Hydrocarbon pollution of edible shellfish by an oil spill. Mar Biol 5(3):195–202

    Article  Google Scholar 

  66. Zakaria MP, et al. (2000) Oil pollution in the Straits of Malacca, Malaysia: application of molecular markers for source identification. Environ Sci Technol 34(7):1189–1196

    Google Scholar 

  67. Kaplan IR, Galperin Y, Lu ST, Lee RP (1997) Forensic environmental geochemistry: differentiation of fuel-types, their sources and release time. Org Geochem 27(5–6):289–317

    Article  CAS  Google Scholar 

  68. BrasselL SC et al (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 290(5808):693–696

    Article  CAS  Google Scholar 

  69. Prince RC, et al. (1994) 17. alpha.(H)-21. beta.(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28(1):142–145

    Google Scholar 

  70. Wang Z, Fingas M, Sergy G (1994) Study of 22-year-old Arrow oil samples using biomarker compounds by GC/MS. Environ Sci Technol 28(9):1733–1746

    Article  CAS  Google Scholar 

  71. Odermatt JR (1994) Natural chromatographic separation of benzene, toluene, ethylbenzene and xylenes (BTEX compounds) in a gasoline contaminated ground water aquifer. Org Geochem 21(10-11):1141–1150

    Article  CAS  Google Scholar 

  72. Hurst RW, Davis TE, Chinn BD (1996) Peer reviewed: the lead fingerprints of gasoline contamination. Environ Sci Technol 30(7):304A–307A

    Article  CAS  Google Scholar 

  73. Zayed J, Hong B (1999) L’espérance, Gilles. Characterization of manganese-containing particles collected from the exhaust emissions of automobiles running with MMT additive. Environ Sci Technol 33(19):3341–3346

    Google Scholar 

  74. Youngless TL et al. (1985) Mass spectral characterization of petroleum dyes, tracers, and additives. Anal Chem 57(9):1894–1902

    Google Scholar 

  75. Suflita JM, Mormile MR (1993) Anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface. Environ Sci Technol 27(5):976–978

    Google Scholar 

  76. Steffan RJ et al (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63(11):4216–4222

    Article  CAS  Google Scholar 

  77. Pankow JF et al. (1997) The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCs) to shallow groundwater. Environ Sci Technol 31(10):2821–2828

    Google Scholar 

  78. Davidson JM, Creek DN (2000) Using the gasoline additive MTBE in forensic environmental investigations. Environ Forensics 1(1):31–36

    Article  CAS  Google Scholar 

  79. Williams P (2001) MTBE in California drinking water: an analysis of patterns and trends. Environ Forensics 2(1):75–85

    Article  CAS  Google Scholar 

  80. Rong Yue (2001) The MTBE paradox of groundwater pollution commentaries & perspectives. Environ Forensics 2(1):9–11

    Article  CAS  Google Scholar 

  81. Stout SA et al (2015) Beyond 16 priority pollutant PAHs: a review of PACs used in environmental forensic chemistry. Polycyclic Aromat Compd 35(2-4):285–315

    Article  CAS  Google Scholar 

  82. Douglas GS et al (1996) Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ Sci Technol 30(7):2332–2339

    Article  CAS  Google Scholar 

  83. Jewett SC et al (1999) ‘Exxon Valdez’ oil spill: impacts and recovery in the soft-bottom benthic community in and adjacent to eelgrass beds. Mar Ecol Prog Ser 185:59–83

    Article  CAS  Google Scholar 

  84. Burns WA et al (1997) A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environ Toxicol Chem Int J 16(6):1119–1131

    Article  CAS  Google Scholar 

  85. Blumer Max (1976) Polycyclic aromatic compounds in nature. Sci Am 234(3):34–45

    Article  CAS  Google Scholar 

  86. Youngblood WW, Blumer M (1975) Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim Cosmochim Acta 39(9):1303–1314

    Article  CAS  Google Scholar 

  87. Laflamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42(3):289–303

    Article  CAS  Google Scholar 

  88. Müller G, Grimmer G, Böhnke H (1977) Sedimentary record of heavy metals and polycyclic aromatic hydrocarbons in Lake Constance. Naturwissenschaften 64(8):427–431

    Article  Google Scholar 

  89. Stout SA, Uhler AD (2003) Distinguishing, “background” hydrocarbons from contamination using chemical fingerprinting. Environ Claims J 15(2):241–259

    Article  Google Scholar 

  90. Stout SA, Uhler AD, Emsbo-Mattingly SD (2004) Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterways. Environ Sci Technol 38(11):2987–2994

    Article  CAS  Google Scholar 

  91. Pankow JF, Cherry JA (1996) Dense chlorinated solvents and other DNAPLs in groundwater: history, behavior, and remediation

    Google Scholar 

  92. Jackson RE, Dwarakanath V (1999) Chlorinated decreasing solvents: physical-chemical properties affecting aquifer contamination and remediation. Groundwater Monitor Remediation 19(4):102–110

    Article  CAS  Google Scholar 

  93. Archer WL, Stevens VL (1977) Comparison of chlorinated, aliphatic, aromatic, and oxygenated hydrocarbons as solvents. Indus Eng Chem Prod Res Develop 16(4):319–325

    CAS  Google Scholar 

  94. Archer WL (1984) A laboratory evaluation of 1, 1, 1-trichloroethane–metal-inhibitor systems. Mater Corros 35(2):60–69

    Article  CAS  Google Scholar 

  95. Morrison RD (2000) Critical review of environmental forensic techniques: Part I. Environ Forensics 1(4):157–173

    Article  CAS  Google Scholar 

  96. Amter S, Ross B (2001) Was contamination of southern California groundwater by chlorinated solvents foreseen? Environ Forensics 2(3):179–184

    Article  Google Scholar 

  97. Kannan K, Maruya KA, Tanabe S (1997) Distribution and characterization of polychlorinated biphenyl congeners in soil and sediments from a superfund site contaminated with Aroclor 1268. Environ Sci Technol 31(5):1483–1488

    Article  CAS  Google Scholar 

  98. Wait AD (2000) Evolution of organic analytical methods in environmental forensic chemistry. Environ Forensics 1(1):37–46

    Article  CAS  Google Scholar 

  99. Watanabe S et al (1996) Concentrations and composition of PCB congeners in the air around stored used capacitors containing PCB insulator oil in a suburb of Bangkok, Thailand. Environ Pollut 92(3):289–297

    Article  CAS  Google Scholar 

  100. Jarman WM et al (1997) Levels and patterns of polychlorinated biphenyls in water collected from the San Francisco Bay and Estuary, (1993–95). Fresenius J Anal Chem 359(3):254–260

    Article  CAS  Google Scholar 

  101. Johnson GW et al (2000) Resolving polychlorinated biphenyl source fingerprints in suspended particulate matter of San Francisco Bay. Environ Sci Technol 34(4):552–559

    Article  CAS  Google Scholar 

  102. Rook JJ (1976) Haloforms in drinking water. J Am Water Works Assoc 68(3):168–172

    Google Scholar 

  103. Rook JJ (1977) Chlorination reactions of fulvic acids in natural waters. Environ Sci Technol 11(5):478–482

    Article  CAS  Google Scholar 

  104. Kitis M et al (2010) Occurrence of trihalomethanes in chlorinated groundwaters with very low natural organic matter and bromide concentrations. Environ Forensics 11(3):264–274

    Article  CAS  Google Scholar 

  105. Tidy CM (1879) XII—The processes for determining the organic purity of potable waters. J Chem Soc Trans 35:46–106

    Google Scholar 

  106. Douglas GS et al (1992) The use of hydrocarbon analyses for environmental assessment and remediation. Soil Sediment Contam 1(3):197–216

    Article  CAS  Google Scholar 

  107. Pharr DY, Mckenzie JK, Hickman AB (1992) Fingerprinting petroleum contamination using synchronous scanning fluorescence spectroscopy. Groundwater 30(4):484–489

    Article  CAS  Google Scholar 

  108. Bhoj Y et al. (2020) Chromatographic Techniques for Forensic Investigations. Technol Forensic Sci Sampling, Anal Data Regul 129–149

    Google Scholar 

  109. Dempster HS, Sherwood LB, Feenstra S (1997) Tracing organic contaminants in groundwater: a new methodology using compound-specific isotopic analysis. Environ Sci Technol 31(11):3193–3197

    Google Scholar 

  110. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Illicit drugs and pharmaceuticals in the environment–forensic applications of environmental data. Part 1: estimation of the usage of drugs in local communities. Environ Pollut 157(6):1773–1777

    Google Scholar 

  111. Kasprzyk-H B, Dinsdale RM, Guwy AJ (2009) Illicit drugs and pharmaceuticals in the environment–Forensic applications of environmental data, Part 2: pharmaceuticals as chemical markers of faecal water contamination. Environ Pollut 157(6):1778–1786

    Article  CAS  Google Scholar 

  112. Browne MA et al (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179

    Article  CAS  Google Scholar 

  113. Do Sul JAI, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364

    Article  CAS  Google Scholar 

  114. Woodall LC et al (2015) Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar Pollut Bull 95(1):40–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilija Brčeski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brčeski, I., Vaseashta, A. (2021). Environmental Forensic Tools for Water Resources. In: Vaseashta, A., Maftei, C. (eds) Water Safety, Security and Sustainability. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-76008-3_15

Download citation

Publish with us

Policies and ethics