Skip to main content

Analysis and Real-Time Classification of Motor-Related EEG and MEG Patterns

  • Chapter
  • First Online:
Wavelets in Neuroscience

Abstract

This chapter describes wavelet analysis of the motor-related cortical activity. First, it introduced real and mental motor activity in the young and the middle-aged healthy subjects. The real motor acts, or motor execution (ME), enables interaction with the environment and induces the motor-related changes in 8–12 Hz and 15–30 Hz wavelet power in the motor cortex. The mental motor acts, or motor imagery (MI), did not include muscle control but may have a motor-planning stage, similar to ME. Detecting the ME and MI brain states underlies the brain-computer interfaces (BCI) for motor control. The ME-BCIs can be used to control exoskeletons and robots. The MI-based BCIs may detect the motor intentions in the paralyzed patients to recover their motor abilities. Second, we described two types of motor imagery: kinesthetic and visual. Visual imagery (VI) corresponds to the self-visualization of the subject moving a limb that does not require special training. Kinesthetic imagery (KI) is the feeling of muscle movement that can only be realized by athletes or specially trained persons. Finally, we considered how the ME brain states change with age representing criteria for an objective assessment of the motor abilities in elderly adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Agosta, M. Pievani, S. Sala, C. Geroldi, S. Galluzzi, G.B. Frisoni, M. Filippi, White matter damage in alzheimer disease and its relationship to gray matter atrophy. Radiology 258(3), 853–863 (2011)

    Article  Google Scholar 

  2. J. Annett, Motor imagery: perception or action? Neuropsychologia 33(11), 1395–1417 (1995)

    Article  Google Scholar 

  3. F.C. Bakker, M.S.J. Boschker, T. Chung, Changes in muscular activity while imagining weight lifting uisng stimulus or response propositions. J. Sport Exerc. Psychol. 18, 313–324 (1996)

    Article  Google Scholar 

  4. M. Berchicci, G. Lucci, C. Pesce, D. Spinelli, F. Di Russo, Prefrontal hyperactivity in older people during motor planning. Neuroimage 62(3), 1750–1760 (2012)

    Article  Google Scholar 

  5. O. Blanke, C. Mohr, C.M. Michel, A. Pascual-Leone, P. Brugger, M. Seeck, T. Landis, G. Thut, Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J. Neurosci. 17, 550–557 (2005)

    Article  Google Scholar 

  6. H. Boecker, A.O. Ceballos-Baumann, P. Bartenstein, A. Dagher, K. Forster, B. Haslinger, D.J. Brooks, M. Schwaiger, B. Conrad, A h(2)(15)o positron emission tomography study on mental imagery of movement sequences-the effect of modulating sequence length and direction. Neuroimage 17(2), 999–1009 (2002)

    Article  Google Scholar 

  7. J. Carp, J. Park, A. Hebrank, D.C. Park, T.A. Polk, Age-related neural dedifferentiation in the motor system. PloS one 6(12) (2011)

    Google Scholar 

  8. P. Dechent, K.D. Merboldt, J. Frahm, Is the human primary motor cortex involved in motor imagery? Brain Res. Cogn. Brain Res. 19(2), 138–144 (2004)

    Article  Google Scholar 

  9. P. Dominey, J. Decety, E. Broussolle, G. Chazot, M. Jeannerod, Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-parkinson’s patients. Neuropsychologia 33, 727–741 (1995)

    Article  Google Scholar 

  10. J.P. Donoghue, J.N. Sanes, Motor areas of the cerebral cortex. J. Clin. Neurophysiol.: Off. Publ. Amer. Electroencephalograph. Soc. 11(4), 382–396 (1994)

    Google Scholar 

  11. J.R. Duann, J.C. Chiou, A comparison of independent event-related desynchronization responses in motor-related brain areas to movement execution, movement imagery, and movement observation. PLoS One 11(9), e0162,546 (2016)

    Google Scholar 

  12. J. Duque, L. Labruna, S. Verset, E. Olivier, R.B. Ivry, Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J. Neurosci. 32, 806–816 (2012)

    Article  Google Scholar 

  13. B.J. Edelman, B. Baxter, B. He, Eeg source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans. Biomed. Eng. 63(1), 4–14 (2016)

    Article  Google Scholar 

  14. H.H. Ehrsson, S. Geyer, E. Naito, Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J. Neurophysiol. 90, 3304–3316 (2003)

    Article  Google Scholar 

  15. J. Fernandez-Ruiz, A. Peltsch, N. Alahyane, D.C. Brien, B.C. Coe, A. Garcia, D.P. Munoz, Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task. Neuroimage 165, 92–101 (2018)

    Article  Google Scholar 

  16. N.S. Frolov, E.N. Pitsik, V.A. Maksimenko, V.V. Grubov, A.R. Kiselev, Z. Wang, A.E. Hramov, Age-related slowing down in the motor initiation in elderly adults. Plos one 15(9), e0233,942 (2020)

    Google Scholar 

  17. L. Gao, J. Wang, L. Chen, Event-related desynchronization and synchronization quantification in motor-related eeg by kolmogorov entropy. J. Neural Eng. 10(3), 036,023 (2013)

    Google Scholar 

  18. E. Gerardin, A. Sirigu, S. Lehéricy, J.B. Poline, B. Gaymard, C. Marsault, Y. Agid, D. Le Bihan, Partially overlapping neural networks for real and imagined hand movements. Cereb. Cortex 10(11), 1093–1104 (2000)

    Article  Google Scholar 

  19. V.V. Grubov, E. Sitnikova, A.N. Pavlov, A.A. Koronovskii, A.E. Hramov, Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets. Physica A 486, 206–217 (2017)

    Article  Google Scholar 

  20. C. Guger, B. Allison, E.C. Leuthardt, Brain-Computer Interface Research (Springer, Berlin, 2014)

    Book  Google Scholar 

  21. A. Guillot, C. Collet, Construction of the motor imagery integrative model in sport: a review and theoretical investigation of motor imagery use. Int. Rev. Sport Exerc. Psychol. 1(1), 31–44 (2008)

    Article  Google Scholar 

  22. A. Guillot, C. Collet, V.A. Nguyen, F. Malouin, C. Richards, J. Doyon, Brain activity during visual versus kinesthetic imagery: an fmri study. Hum. Brain Mapp. 30(7), 2157–2172 (2009)

    Article  Google Scholar 

  23. A. Guillot, F. Di Rienzo, T. MacIntyre, A. Moran, C. Collet, Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front. Hum. Neurosci. 6, 247 (2012)

    Article  Google Scholar 

  24. A. Guillot, F. Lebon, D. Rouffet, S. Champely, J. Doyon, C. Collet, Muscular responses during motor imagery as a function of muscle contraction types. Int. J. Psychophysiol. 18, 18–27 (2007)

    Article  Google Scholar 

  25. S.D. Hall, G.R. Barnes, P.L. Furlong, S. Seri, A. Hillebrand, Neuronal network pharmacodynamics of gabaergic modulation in the human cortex determined using pharmaco-magnetoencephalography. Hum. Brain Mapp. 31(4), 581–594 (2010)

    Google Scholar 

  26. S.D. Hall, I.M. Stanford, N. Yamawaki, C. McAllister, K. Rönnqvist, G.L. Woodhall, P.L. Furlong, The role of gabaergic modulation in motor function related neuronal network activity. Neuroimage 56(3), 1506–1510 (2011)

    Article  Google Scholar 

  27. H.L. Halme, L. Parkkonen, Comparing features for classification of meg responses to motor imagery. PLoS One 11(12), e0168,766 (2016)

    Google Scholar 

  28. H.L. Halme, L. Parkkonen, Across-subject offline decoding of motor imagery from meg and eeg. Sci. Rep. 8, 10,087 (2018)

    Google Scholar 

  29. T. Hanakawa, Organizing motor imageries. Neurosci. Res. 104, 56–63 (2016)

    Article  Google Scholar 

  30. T. Hanakawa, M.A. Dimyan, M. Hallett, Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional mri. Cereb. Cortex 18(12), 2775–2788 (2008)

    Article  Google Scholar 

  31. T. Hanakawa, I. Immisch, K. Toma, M.A. Dimyan, P. van Gelderen, M. Hallett, Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol. 89, 989–1002 (2003)

    Article  Google Scholar 

  32. T. Harmony, The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83 (2013)

    Article  Google Scholar 

  33. P. Herman, G. Prasad, T.M. McGinnity, D. Coyle, Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4), 317–326 (2008)

    Google Scholar 

  34. S. Heuninckx, N. Wenderoth, S.P. Swinnen, Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J. Neurosci. 28(1), 91–99 (2008)

    Article  Google Scholar 

  35. A.E. Hramov, N.S. Frolov, V.A. Maksimenko, V.V. Makarov, A.A. Koronovskii, J. Garcia-Prieto, L.F. Antón-Toro, F. Maestú, A.N. Pisarchik, Artificial neural network detects human uncertainty. Chaos 28(3), 033,607 (2018)

    Google Scholar 

  36. A.E. Hramov, V.A. Maksimenko, S.V. Pchelintseva, A.E. Runnova, V.V. Grubov, V.Y. Musatov, M.O. Zhuravlev, A.A. Koronovskii, A.N. Pisarchik, Classifying the perceptual interpretations of a bistable image using eeg and artificial neural networks. Front. Neurosci. 11, 674 (2017)

    Article  Google Scholar 

  37. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  38. S. Ionta, L. Heydrich, B. Lenggenhager, M. Mouthon, E. Fornari, D. Chapuis, R. Gassert, O. Blanke, Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron 70, 363–374 (2011)

    Article  Google Scholar 

  39. K. Iseki, T. Hanakawa, J. Shinozaki, M. Nankaku, H. Fukuyama, Natural mechanisms involved in mental imagery and observation of gait. Neuroimage 41, 1021–1031 (2008)

    Article  Google Scholar 

  40. P.C. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Multifractality in human heartbeat dynamics. Nature 399(6735), 461–465 (1999)

    Article  Google Scholar 

  41. S. Izumi, T.W. Findley, T. Ikai, J. Andrews, M. Daum, N. Chino, Facilitatory effect of thinking about movement on motor-evoked potentials to transcranial magnetic stimulation of the brain. Amer. J. Phys. Med. Rehabil. 74(3), 207–213 (1995)

    Article  Google Scholar 

  42. A.K. Jain, Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  43. M. Jeannerod, The representing brain: neural correlates of motor intention and imagery. Behav. Brain Sci. 17, 187–202 (1994)

    Article  Google Scholar 

  44. T. Kalisch, C. Wilimzig, N. Kleibel, M. Tegenthoff, H.R. Dinse, Age-related attenuation of dominant hand superiority. PLoS One 1(1) (2006)

    Google Scholar 

  45. K. Kasahara, C.S. DaSalla, M. Honda, T. Hanakawa, Neuroanatomical correlates of brain-computer interface performance. Neuroimage 110, 95–100 (2015)

    Article  Google Scholar 

  46. T. Kasai, S. Kawai, M. Kawanishi, S. Yahagi, Evidence for facilitation of motor evoked potentials (meps) induced by motor imagery. Brain Res. 744, 147–150 (1997)

    Article  Google Scholar 

  47. C.H. Kasess, C. Windischberger, R. Cunnington, R. Lanzenberger, L. Pezawas, E. Moser, The suppressive influence of sma on m1 in motor imagery revealed by fmri and dynamic causal modeling. Neuroimage 40, 828–837 (2008)

    Article  Google Scholar 

  48. L. Kauhanen, P. Rantanen, J. Lehtonen, I. Tarnanen, H. Alaranta, M. Sams, Sensorimotor cortical activity of tetraplegics during attempted finger movements. Biomed. Tech. 49(1), 59–60 (2004)

    Google Scholar 

  49. M. Krams, M.F. Rushworth, M.P. Deiber, R.S. Frackowiak, R.E. Passingham, The preparation, execution and suppression of copied movements in the human brain. Exp. Brain Res. 120, 386–398 (2010)

    Article  Google Scholar 

  50. J. Kroeger, T. Baumer, M. Jonas, J.C. Rothwell, H.R. Siebner, A. Munchau, Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. Eur. J. Neurosci. 32, 1771–1779 (2010)

    Article  Google Scholar 

  51. J. Langan, S. Peltier, J. Bo, B.W. Fling, R.C. Welsh, R.D. Seidler, Functional implications of age differences in motor system connectivity. Front. Syst. Neurosci. 4, 17 (2010)

    Google Scholar 

  52. F. Lebon, W.D. Byblow, C. Collet, A. Guillot, C.M. Stinear, The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur. J. Neurosci. 35, 323–331 (2012)

    Article  Google Scholar 

  53. N. Liang, Z. Ni, M. Takahashi, T. Murakami, S. Yahagi, K. Funase, T. Kato, T. Kasai, Effects of motor imagery are dependent on motor strategies. NeuroReport 18(12), 1241–1245 (2007)

    Article  Google Scholar 

  54. Q. Lin, M.D. Rosenberg, K. Yoo, T.W. Hsu, T.P. O’Connell, M.M. Chun, Resting-state functional connectivity predicts cognitive impairment related to alzheimer’s disease. Front. Aging Neurosci. 10, 94 (2018)

    Article  Google Scholar 

  55. E.R. Lindemer, D.N. Greve, B.R. Fischl, J.C. Augustinack, D.H. Salat, A.D.N. Initiative, et al., Regional staging of white matter signal abnormalities in aging and alzheimer’s disease. NeuroImage: Clinical 14, 156–165 (2017)

    Google Scholar 

  56. M. Lotze, P. Montoya, M. Erb, E. Hülsmann, H. Flor, U. Klose, N. Birbaumer, W. Grodd, Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fmri study. J. Cogn. Neurosci. 11(5), 491–501 (1999)

    Google Scholar 

  57. K.L. Macuga, S.H. Frey, Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage 59, 2798–2807 (2012)

    Article  Google Scholar 

  58. C. Maes, J. Gooijers, J.J.O. de Xivry, S.P. Swinnen, M.P. Boisgontier, Two hands, one brain, and aging. Neurosci. & Biobehav. Rev. 75, 234–256 (2017)

    Article  Google Scholar 

  59. V.A. Maksimenko, S.A. Kurkin, E.N. Pitsik, V.Y. Musatov, A.E. Runnova, T.Y. Efremova, A.E. Hramov, A.N. Pisarchik, Artificial neural network classification of motor-related eeg: an increase in classification accuracy by reducing signal complexity. Complexity 2018 (2018)

    Google Scholar 

  60. V.A. Maksimenko, A. Pavlov, A.E. Runnova, V. Nedaivozov, V. Grubov, A. Koronovslii, S.V. Pchelintseva, E. Pitsik, A.N. Pisarchik, A.E. Hramov, Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlin. Dyn. 91(4), 2803–2817 (2018)

    Article  Google Scholar 

  61. F. Malouin, C.L. Richards, P.L. Jackson, F. Dumas, J. Doyon, Brain activations during motor imagery of locomotor-related tasks: a pet study. Hum. Brain Mapp. 19(1), 47–62 (2003)

    Article  Google Scholar 

  62. Y. Meyer, Wavelets: Algorithms & Applications (SIAM Society for Industrial and Applied Mathematics, Philadelphia, 1993)

    Google Scholar 

  63. N. Mizuguchi, H. Nakata, Y. Uchida, K. Kanosue, Motor imagery and sport performance. J. Phys. Fitness Sports Med. 1(1), 103–111 (2012)

    Article  Google Scholar 

  64. M.M. Moore, Real-world applications for brain-computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 162–165 (2003)

    Article  Google Scholar 

  65. J.F. Muzy, E. Bacry, A. Arneodo, Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67(25), 3515 (1991)

    Article  Google Scholar 

  66. E. Naito, T. Kochlyama, R. Kitaba, S. Nakamura, M. Matsumura, Y. Yonekura, N. Sadato, Internally simulated movement sensations during motorimagery activate cortical motor areas and the cerebellum. J. Neurosci. 41, 3683–3691 (2002)

    Article  Google Scholar 

  67. E. Naito, R. Matsumoto, N. Hagura, Y. Oouchida, H. Tomimoto, T. Hanakawa, Importance of precentral motor regions in human kinesthesia: a single case study. Neurocase 17, 133–147 (2011)

    Article  Google Scholar 

  68. E. Naito, P.E. Roland, H.H. Ehrsson, I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36, 979–988 (2002)

    Article  Google Scholar 

  69. C. Neuper, R. Scherer, M. Reiner, G. Pfurtscheller, Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial eeg. Cogn. Brain Res. 25(3), 668–677 (2005)

    Article  Google Scholar 

  70. M.R. Nuwer, G. Comi, R. Emerson, A. Fuglsang-Frederiksen, J.M. Guérit, H. Hinrichs, A. Ikeda, F.J.C. Luccas, P. Rappelsburger, Ifcn standards for digital recording of clinical eeg. Electroencephalogr. Clin. Neurophysiol. 106(3), 259–261 (1998)

    Article  Google Scholar 

  71. C.H. Park, W.H. Chang, M. Lee, G.H. Kwon, L. Kim, S.T. Kim, Y.-H. Kim, Which motor cortical region best predicts imagined movement? Neuroimage 113, 101–110 (2015)

    Google Scholar 

  72. A.N. Pavlov, A.E. Hramov, A.A. Koronovskii, E.Y. Sitnikova, V.A. Makarov, A.A. Ovchinnikov, Wavelet analysis in neurodynamics. Phys. Usp. 55(9), 845–875 (2012)

    Article  Google Scholar 

  73. S. Perrey, Brain activation associated with eccentric movement: a narrative review of the literature. Eur. J. Sport Sci. 18(1), 75–82 (2018)

    Article  Google Scholar 

  74. G. Pfurtscheller, C. Brunner, A. Schlögl, F.L. Da Silva, Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)

    Article  Google Scholar 

  75. G. Pfurtscheller, C. Brunner, A. Schlöogl, F.H. Lopes da Silva, Mu rhythm (de)synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)

    Google Scholar 

  76. G. Pfurtscheller, C. Neuper, Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239(2–3), 65–68 (1997)

    Article  Google Scholar 

  77. G. Pfurtscheller, C. Neuper, C. Brunner, F.H. Lopes da Silva, Beta rebound after different types of motor imagery in man. Neurosci. Lett. 378(3), 156–159 (2005)

    Google Scholar 

  78. G. Pfurtscheller, F.H. Lopes da Silva, Event-related eeg/meg synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Google Scholar 

  79. E. Pitsik, N. Frolov, K. Hauke Kraemer, V. Grubov, V. Maksimenko, J. Kurths, A. Hramov, Motor execution reduces eeg signals complexity: Recurrence quantification analysis study. Chaos: Interdis. J. Nonlinear Sci. 30(2), 023,111 (2020)

    Google Scholar 

  80. C.A. Porro, V. Cettolo, M.P. Francescato, P. Baraldi, Ipsilateral involvement of primary motor cortex during motor imagery. Eur. J. Neurosci. 11(5), 3059–3063 (2000)

    Article  Google Scholar 

  81. L. Prichep, E. John, S.H. Ferris, B. Reisberg, M. Almas, K. Alper, R. Cancro, Quantitative eeg correlates of cognitive deterioration in the elderly. Neurobiol. Aging 15(1), 85–90 (1994)

    Article  Google Scholar 

  82. P.A. Reuter-Lorenz, D.C. Park, How does it stac up? revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24(3), 355–370 (2014)

    Article  Google Scholar 

  83. R. Salmelin, R. Hari, Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60(2), 537–550 (1994)

    Article  Google Scholar 

  84. A. Schnitzler, S. Salenius, R. Salmelin, V. Jousmäki, R. Hari, Involvement of primary motor cortex in motor imagery: a neuromagnetic study. NeuroImage 6(3), 201–208 (1997)

    Google Scholar 

  85. J. Schwoebel, C.B. Boronat, H. Branch Coslett, The man who executed “imagined” movements: evidence for dissociable components of the body schema. Brain Cogn. 50, 1–16 (2002)

    Article  Google Scholar 

  86. N. Sharma, V.M. Pomeroy, J.C. Baron, Motor imagery: a backdoor to the motor system after stroke? Stroke 37, 1941–1952 (2006)

    Article  Google Scholar 

  87. A. Sirigu, L. Cohen, J.R. Duhamel, B. Pillon, B. Dubois, Y. Agid, C. Pierrot-Deseilligny, Congruent unilateral impairments for real and imagined hand movements. NeuroReport 6, 997–1001 (1995)

    Article  Google Scholar 

  88. A. Sirigu, J.R. Duhamel, L. Cohen, B. Pillon, B. Dubois, Y. Agid, The mental representation of hand movements after parietal cortex damage. Science 273, 1564–1568 (1996)

    Article  Google Scholar 

  89. E. Sitnikova, A.E. Hramov, A.A. Koronovskii, E.L. Luijtelaar, Sleep spindles and spike-wave discharges in eeg: their generic features, similarities and distinctions disclosed with fourier transform and continuous wavelet analysis. J. Neurosci. Methods 180, 304–316 (2009)

    Article  Google Scholar 

  90. C.D. Smith, G. Umberger, E. Manning, J. Slevin, D. Wekstein, F. Schmitt, W. Markesbery, Z. Zhang, G. Gerhardt, R. Kryscio et al., Critical decline in fine motor hand movements in human aging. Neurology 53(7), 1458–1458 (1999)

    Article  Google Scholar 

  91. A. Solodkin, P. Hlustik, E.E. Chen, S.L. Small, Fine modulation in network activation during motor execution and motor imagery. Cereb. Cortex 14, 1246–1255 (2004)

    Article  Google Scholar 

  92. F.A. Sorond, Y. Cruz-Almeida, D.J. Clark, A. Viswanathan, C.R. Scherzer, P. De Jager, A. Csiszar, P.J. Laurienti, J.M. Hausdorff, W.G. Chen et al., Aging, the central nervous system, and mobility in older adults: neural mechanisms of mobility impairment. J. Gerontol. Ser. A: Biomed. Sci. Med. Sci. 70(12), 1526–1532 (2015)

    Article  Google Scholar 

  93. R.M. Steketee, R. Meijboom, M. de Groot, E.E. Bron, W.J. Niessen, A. van der Lugt, J.C. van Swieten, M. Smits, Concurrent white and gray matter degeneration of disease-specific networks in early-stage alzheimer’s disease and behavioral variant frontotemporal dementia. Neurobiol. Aging 43, 119–128 (2016)

    Article  Google Scholar 

  94. K.M. Stephan, R.S. Frackowiak, Motor imagery - anatomical representation and electrophysiological characteristics. Neurochem. Res. 21(9), 1105–1116 (1996)

    Article  Google Scholar 

  95. C.M. Stinear, W.D. Byblow, Role of intracortical inhibition in selective hand muscle activation. J. Neurophysiol. 89, 2014–2020 (2003)

    Article  Google Scholar 

  96. E. Stomrud, O. Hansson, L. Minthon, K. Blennow, I. Rosén, E. Londos, Slowing of eeg correlates with csf biomarkers and reduced cognitive speed in elderly with normal cognition over 4 years. Neurobiol. Aging 31(2), 215–223 (2010)

    Article  Google Scholar 

  97. N. Takeuchi, T. Mori, K. Nishijima, T. Kondo, S. Izumi, Inhibitory transcranial direct current stimulation enhances weak beta event-related synchronization after foot motor imagery in patients with lower limb amputation. J. Clin. Neurophysiol. 32(1), 44–50 (2015)

    Article  Google Scholar 

  98. J.I. Todor, T. Doane, Handedness and hemispheric asymmetry in the control of movements. J. Mot. Behav. 10(4), 295–300 (1978)

    Article  Google Scholar 

  99. C. Toro, G. Deuschl, R. Thatcher, S. Sato, C. Kufta, M. Hallett, Event-related desynchronization and movement-related cortical potentials on the ecog and eeg. Electroencephalograph. Clin. Neurophysiol./Evoked Potentials Sect. 93(5), 380–389 (1994)

    Article  Google Scholar 

  100. T. Wang, J. Deng, B. He, Classifying eeg-based motor imagery tasks by means of time—frequency synthesized spatial patterns. Clin. Neurophysiol. 115(12), 2744–2753 (2004)

    Google Scholar 

  101. N.S. Ward, Compensatory mechanisms in the aging motor system. Ageing Res. Rev. 5(3), 239–254 (2006)

    Article  Google Scholar 

  102. D.S. Wilks, Cluster analysis, in International Geophysics, vol. 100 (Elsevier, Amsterdam, 2011), pp. 603–616

    Google Scholar 

  103. J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. U S A 101(51), 17,849–17,854 (2004)

    Google Scholar 

  104. A. Xifra-Porxas, G. Niso, S. Larivière, M. Kassinopoulos, S. Baillet, G.D. Mitsis, M.H. Boudrias, Older adults exhibit a more pronounced modulation of beta oscillations when performing sustained and dynamic handgrips. Neuroimage 201, 116,037 (2019)

    Google Scholar 

  105. E. Yu, Z. Liao, D. Mao, Q. Zhang, G. Ji, Y. Li, Z. Ding, Directed functional connectivity of posterior cingulate cortex and whole brain in alzheimer’s disease and mild cognitive impairment. Curr. Alzheimer Res. 14(6), 628–635 (2017)

    Article  Google Scholar 

  106. M. Yu, A.A. Gouw, A. Hillebrand, B.M. Tijms, C.J. Stam, E.C. van Straaten, Y.A. Pijnenburg, Different functional connectivity and network topology in behavioral variant of frontotemporal dementia and alzheimer’s disease: an eeg study. Neurobiol. Aging 42, 150–162 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Hramov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Maksimenko, V.A., Pavlov, A.N., Sitnikova, E. (2021). Analysis and Real-Time Classification of Motor-Related EEG and MEG Patterns. In: Wavelets in Neuroscience. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-030-75992-6_9

Download citation

Publish with us

Policies and ethics