Skip to main content

Twelve Ways to Fool the Masses When Giving Parallel-in-Time Results

  • 212 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 356)

Abstract

Getting good speedup—let alone high parallel efficiency—for parallel-in-time (PinT) integration examples can be frustratingly difficult. The high complexity and large number of parameters in PinT methods can easily (and unintentionally) lead to numerical experiments that overestimate the algorithm’s performance. In the tradition of Bailey’s article “Twelve ways to fool the masses when giving performance results on parallel computers”, we discuss and demonstrate pitfalls to avoid when evaluating the performance of PinT methods. Despite being written in a light-hearted tone, this paper is intended to raise awareness that there are many ways to unintentionally fool yourself and others and that by avoiding these fallacies more meaningful PinT performance results can be obtained.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75933-9_4
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75933-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    One exception are so-called “parallel-across-the-method” PinT methods in the terminology by Gear [8] that can deliver smaller scale parallelism.

References

  1. Aktosun, T., Demontis, F., Van Der Mee, C.: Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Problems 23(5), 2171 (2007)

    MathSciNet  CrossRef  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)

    MathSciNet  CrossRef  Google Scholar 

  3. Bailey, D.H.: Twelve ways to fool the masses when giving performance results on parallel computers. Supercomputing Review 4(8) (1991)

    Google Scholar 

  4. Chawner, J.: Revisiting “Twelve ways to fool the masses when describing mesh generation performance”. https://blog.pointwise.com/2011/05/23/revisiting-%e2%80%9ctwelve-ways-to-fool-the-masses-when-describing-mesh-generation-performance%e2%80%9d/ (2011). Accessed: 2020-4-28

  5. Dongarra, J., et al.: Applied Mathematics Research for Exascale Computing. Tech. Rep. LLNL-TR-651000, Lawrence Livermore National Laboratory (2014). URL http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport:pdf

  6. Emmett, M., Minion, M.L.: Toward an Efficient Parallel in Time Method for Partial Differential Equations. Communications in Applied Mathematics and Computational Science 7, 105–132 (2012). DOI https://doi.org/10.2140/camcos.2012.7.105

  7. Gander, M.J.: 50 years of Time Parallel Time Integration. In: Multiple Shooting and Time Domain Decomposition. Springer (2015). DOI https://doi.org/10.1007/978-3-319-23321-5_3

  8. Gear, C.W.: Parallel methods for ordinary differential equations. CALCOLO 25(1-2), 1–20 (1988). DOI https://doi.org/10.1007/BF02575744

  9. Globus, A., Raible, E.: Fourteen ways to say nothing with scientific visualization. Computer 27(7), 86–88 (1994)

    CrossRef  Google Scholar 

  10. Gustafson, J.L.: Twelve ways to fool the masses when giving performance results on traditional vector computers. http://www.johngustafson.net/fun/fool.html (1991). Accessed: 2020-4-28

  11. Hoefler, T.: Twelve ways to fool the masses when reporting performance of deep learning workloads! (not to be taken too seriously) (2018). ArXiv, arXiv:1802.09941

  12. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203(1), 72–88 (2005)

    MathSciNet  CrossRef  Google Scholar 

  13. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 332, 661–668 (2001). DOI https://doi.org/10.1016/S0764-4442(00)01793-6

  14. Minhas, F., Asif, A., Ben-Hur, A.: Ten ways to fool the masses with machine learning (2019). ArXiv, arXiv:1901.01686

  15. Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. ACM 7(12), 731–733 (1964). DOI https://doi.org/10.1145/355588.365137

  16. Ong, B.W., Schroder, J.B.: Applications of time parallelization. Computing and Visualization in Science 648 (2019)

    Google Scholar 

  17. Pakin, S.: Ten ways to fool the masses when giving performance results on GPUs. HPCwire, December 13 (2011)

    Google Scholar 

  18. Tautges, T.J., White, D.R., Leland, R.W.: Twelve ways to fool the masses when describing mesh generation performance. IMR/PINRO Joint Rep. Ser. pp. 181–190 (2004)

    Google Scholar 

Download references

Acknowledgements

The work of Minion was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contract number DE-AC02005CH11231. Part of the simulations was performed using resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Minion .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

The value of \(\sigma \) in the first example is 0.02.

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Götschel, S., Minion, M., Ruprecht, D., Speck, R. (2021). Twelve Ways to Fool the Masses When Giving Parallel-in-Time Results. In: Ong, B., Schroder, J., Shipton, J., Friedhoff, S. (eds) Parallel-in-Time Integration Methods. PinT 2020. Springer Proceedings in Mathematics & Statistics, vol 356. Springer, Cham. https://doi.org/10.1007/978-3-030-75933-9_4

Download citation