Aktosun, T., Demontis, F., Van Der Mee, C.: Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Problems 23(5), 2171 (2007)
MathSciNet
CrossRef
Google Scholar
Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)
MathSciNet
CrossRef
Google Scholar
Bailey, D.H.: Twelve ways to fool the masses when giving performance results on parallel computers. Supercomputing Review 4(8) (1991)
Google Scholar
Chawner, J.: Revisiting “Twelve ways to fool the masses when describing mesh generation performance”. https://blog.pointwise.com/2011/05/23/revisiting-%e2%80%9ctwelve-ways-to-fool-the-masses-when-describing-mesh-generation-performance%e2%80%9d/ (2011). Accessed: 2020-4-28
Dongarra, J., et al.: Applied Mathematics Research for Exascale Computing. Tech. Rep. LLNL-TR-651000, Lawrence Livermore National Laboratory (2014). URL http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport:pdf
Emmett, M., Minion, M.L.: Toward an Efficient Parallel in Time Method for Partial Differential Equations. Communications in Applied Mathematics and Computational Science 7, 105–132 (2012). DOI https://doi.org/10.2140/camcos.2012.7.105
Gander, M.J.: 50 years of Time Parallel Time Integration. In: Multiple Shooting and Time Domain Decomposition. Springer (2015). DOI https://doi.org/10.1007/978-3-319-23321-5_3
Gear, C.W.: Parallel methods for ordinary differential equations. CALCOLO 25(1-2), 1–20 (1988). DOI https://doi.org/10.1007/BF02575744
Globus, A., Raible, E.: Fourteen ways to say nothing with scientific visualization. Computer 27(7), 86–88 (1994)
CrossRef
Google Scholar
Gustafson, J.L.: Twelve ways to fool the masses when giving performance results on traditional vector computers. http://www.johngustafson.net/fun/fool.html (1991). Accessed: 2020-4-28
Hoefler, T.: Twelve ways to fool the masses when reporting performance of deep learning workloads! (not to be taken too seriously) (2018). ArXiv, arXiv:1802.09941
Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203(1), 72–88 (2005)
MathSciNet
CrossRef
Google Scholar
Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 332, 661–668 (2001). DOI https://doi.org/10.1016/S0764-4442(00)01793-6
Minhas, F., Asif, A., Ben-Hur, A.: Ten ways to fool the masses with machine learning (2019). ArXiv, arXiv:1901.01686
Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. ACM 7(12), 731–733 (1964). DOI https://doi.org/10.1145/355588.365137
Ong, B.W., Schroder, J.B.: Applications of time parallelization. Computing and Visualization in Science 648 (2019)
Google Scholar
Pakin, S.: Ten ways to fool the masses when giving performance results on GPUs. HPCwire, December 13 (2011)
Google Scholar
Tautges, T.J., White, D.R., Leland, R.W.: Twelve ways to fool the masses when describing mesh generation performance. IMR/PINRO Joint Rep. Ser. pp. 181–190 (2004)
Google Scholar