Skip to main content

Analysis of Creep, Shrinkage, and Damage in Armored Concrete Dome at Static and Seismic Loading

  • Chapter
  • First Online:
Nonlinear Mechanics of Complex Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 157))

  • 986 Accesses

Abstract

The main approaches and methods for studying creep and long-term strength of thin-walled structures made of concrete and reinforced concrete are considered. A mathematical formulation and a method for solving the creep-damage problem of thin-walled concrete elements under short-term and long-term loading, which makes it possible to determine their bearing capacity and long-term strength, are presented. An example of calculations the resistance to dynamic loading and long-term strength of a reinforced concrete dome is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bari, M.S.: Punching shear strength of slab-column connections—a comparative study of different codes. Journal of the Institution of Engineers 80(4), 163–168 (2000)

    Google Scholar 

  • Baron, J., Sautgrey, R.: Le Beton Hydraulique. Presses de l’ENPC, Paris (1982)

    Google Scholar 

  • Bazant, Z.P., Baweja, S.: Creep and shrinkage prediction model for analysis and design of concrete structures: model B3. In: Al-Manaseer, A. (Ed,) Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects, ACI SP-194. Am. Concrete Institute, Farmington Hills, Michigan, pp. 1–83 (2000)

    Google Scholar 

  • Bazant, Z.P., Xi, Y.-P., Baweja, S., Carol, I.: Preliminary guidelines and recommendations for characterizing creep and shrinkage in structural design codes. In: Bazant, Z.P., Carol, I. (eds.) Proceedings of 5th International RILEM Symposium on Creep and Shrinkage of Concrete (ConCreep 5), held at U.P.C., Barcelona, September, E & FN Spon, London (1993), pp. 805–829

    Google Scholar 

  • Breslavsky, D.V., Korytko, Y.N., Tatarinova, O.A.: Design and Development of Finite Element Method Software. Pidruchnyk NTU «KhPI» , Kharkiv, Ukraine (2017) (in Ukrainian)

    Google Scholar 

  • Breslavsky, D., Morachkovsky, O., Tatarinova, O.: Creep and damage in shells of revolution under cyclic loading and heating. Int. J. Nonlinear Mechan. 66, 87–95 (2014)

    Article  Google Scholar 

  • Breslavsky, D., Chuprynin, A., Morachkovsky, O., Tatarinova, O., Pro, W.: Deformation and damage of nuclear power station fuel elements under cyclic loading. J. Strain Anal. Eng. Des. 54(5–6), 348–359 (2019)

    Article  Google Scholar 

  • Charpin, L., Pape, Y.L., Coustabeau, E., Toppani, E., Heinfling, G., Le Bellego, C., Masson, B., Montalvo, J., Courtois, A., Sanahuja, J., de Reviron, N.: A 12 year EDF study of concrete creep under uniaxial and biaxial loading. Cem. Concr. Res. 103, 140–159 (2018)

    Article  Google Scholar 

  • DIN EN 1992-1-1:2005-10, Eurocodez «Design of concrete structures. Part 1: General Rules and Rules for Building» Commition of European Communities (2005)

    Google Scholar 

  • Donnel, L.H.: Stability of Thin-Walled Tubes Under Torsion. NACA report No.479 (1933)

    Google Scholar 

  • EN 1992-2-1, Eurocodez «Desing of concrete structures. Part 1: General Rules and Rules for Building»—Commition of European Communities (1991)

    Google Scholar 

  • Gawin, D., Pesavento, F., Schrefler, B.A.: Modelling creep and shrinkage of concrete by means of effective stresses. Mater. Struct. (2007)

    Google Scholar 

  • Gernay, T.: Effect of transient creep strain model on the behavior of concrete columns subjected to Heating and Cooling. Fire Technol. 48(2), 313–329 (2012)

    Article  Google Scholar 

  • Handbook for the Design of Prestressed Reinforced Concrete Structures Made of Heavy Concrete (to SP 52-102·2003). Tsniipromzdanii, Moscow, Russia (2005) (In Russian)

    Google Scholar 

  • Hubler, M.H., Wendner, R., Bazant, Z.P.: Comprehensive database for concrete creep and shrinkage: analysis and recommendations for testing and recording. ACI Mater. J. 112(4), 547–558 (2015)

    Google Scholar 

  • Jennings, H., Masoero, E., Pinson, M., Strekalova, E.G., Bonnaud, P.A., Manzano, H., Ji, Q., Thomas, J.J., Pellenq, R.J.M., Ulm, F.J., Bazant, M.Z., Van Vliet, K.J.: Water isotherms, shrinkage and creep of cement paste: hypotheses, models and experiments. Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete, American Society of Civil Engineers (2013), pp. 134–141

    Google Scholar 

  • Klovanich, S.F.: Finite Element Method in Nonlinear Mechanics of Reinforced Concrete. Zaporozhye, Ukraine: IPO Zaporozhye (2009) (In Russian)

    Google Scholar 

  • Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  • Mancinelli, P.A.: Acrylic HMPSA base provides adhesion and stability features. Adhesive Age 32(10), 18–23 (1989)

    Google Scholar 

  • Neville, A.M.: Properties of Concrete. Wiley, New York (1973)

    Google Scholar 

  • Pignatelli, I., Kumar, A., Alizadeh, R., Le Pape, Y., Bauchy, M., Sant, G.: A Dissolution-precipitation mechanism is at the origin of concrete creep in moist environments. J. Chem. Phys. 145(5) (2016)

    Google Scholar 

  • Prandtl, L.: Spannungsverteilung in plastischen körpern. Proc. 1st Int. Congr. Appl. Mech. 43–54 (1925)

    Google Scholar 

  • Rabotnov, Y.N.: Creep Problems in Structural Members. North-Holland, Amsterdam (1969)

    MATH  Google Scholar 

  • RILEM Technical Committee TC-242-MDC (Z.P. Bazant, chair). RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. Mater. Struct. 48(4), 753–770 (2015)

    Google Scholar 

  • Rossi, P., Tailhan, J.-L., Le Maou, F., Gaillet, L., Martin, E.: Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem. Concr. Res. 42(1), 61–73 (2012)

    Article  Google Scholar 

  • Sakata, K., Ayano, T., Imamoto, K., Sato, Y.: Database of creep and shrinkage based on Japanese researches. Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures: Proceedings of ConCreep 8. Taylor & Francis (2008), pp. 1253–1274

    Google Scholar 

  • Sellier, A., Multon, S., Bufo-Lacarriere, L., Vidal, T., Bourbon, X., Camps, G.: Concrete creep modelling for structural applications: non-linearity, multi-axiality, hydration, temperature and drying effects. Cement Concr. Res. 79, 301–315 (2016)

    Article  Google Scholar 

  • Shmukler, V.S., Chuprynin, A.A., Abbasi, R.H.: New method of full-scale tests. Concr. Reinf. Concr. Ukraine 5, 13–24 (2010). (In Russian)

    Google Scholar 

  • SP 14.13330.2014. Construction in seismic areas SNiP II-7-81*. The Ministry of Construction, Moscow, Russia (2014) (In Russian)

    Google Scholar 

  • Tanabe, T., Ono, S., Morimoto, H., Nakamura, H., Ishikawa, Y.: Development of comprehensive platform for the estimation of volume change and damage in cement. Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete, American Society of Civil Engineers (2013), pp. 412–420

    Google Scholar 

  • Torrenti, J.M., Le Roy, R.: Analysis of some basic creep tests on concrete and their implications for modeling. Struct. Concr. 22 (2018)

    Google Scholar 

  • Ulm, F.J., Jennings, M.H., Roland, J.M.P.: Mechanics and physics of creep, shrinkage, and durability of Concrete (ASCE). Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9) Cambridge, Massachusetts, United States September 22–25, 2013, American Society of Civil Engineers, Boston (2013)

    Google Scholar 

  • Volmir, A.S.: The Nonlinear Dynamics of Plates and Shells, Foreign Technology Division. Wright-Patterson Air Force Base, USA (1974)

    Google Scholar 

  • Widianto: Rehabilitation of Reinforced-Concrete Slab-Column Connections for Two-Way Shear. PHD Dissertation University of Texas at Austin, Austin, TX (2006)

    Google Scholar 

  • Zienkiewicz, O.C., Taylor, R.L., Wood, D.D.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Breslavsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Breslavsky, D., Chuprynin, A. (2021). Analysis of Creep, Shrinkage, and Damage in Armored Concrete Dome at Static and Seismic Loading. In: Altenbach, H., Amabili, M., Mikhlin, Y.V. (eds) Nonlinear Mechanics of Complex Structures. Advanced Structured Materials, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-030-75890-5_15

Download citation

Publish with us

Policies and ethics