Skip to main content

Effect of Finite Vessel Stiffness on Transition from Two-Dimensional Liquid Sloshing to Swirling: Reduced-Order Modeling

  • Chapter
  • First Online:
Nonlinear Mechanics of Complex Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 157))

  • 1031 Accesses

Abstract

Liquid sloshing in partially filled tanks is rather complex. Thus, reduced-order dynamical models are often used in attempt to describe the dynamics of the contained liquid. One of the most important sloshing phenomena is the transition from two-dimensional to three-dimensional motion, including swirling. This paper addresses a reduced-order model that describes this transition, with one substantial addition—it considers finite stiffness of the vessel itself. Most classical models were obtained under the assumption of infinite stiffness of the vessel and therefore neglected the interaction between the sloshing liquid and the tank structural modes. However, this interaction was proven to be extremely significant. This paper suggests a reduced-order model of the sloshing liquid in a tank with finite stiffness and analyzes the model in conditions of simple horizontal harmonic forcing. The effect of vessel stiffness on the transition from two-dimensional to three-dimensional motion is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson, H.N.: The Dynamic Behavior of Liquids in Moving Containers. NASA Spec. Publ. 106 (1966)

    Google Scholar 

  • Balendra, T., Ang, K.K., Paramasivam, P., Lee, S.L.: Seismic design of flexible cylindrical liquid storage tanks. Earthq. Eng. Struct. Dyn. 10, 477–496 (1982)

    Article  Google Scholar 

  • Barton, D.C., Parker, J.V.: Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks. Earthq. Eng. Struct. Dyn. 15, 299–322 (1987)

    Article  Google Scholar 

  • Bauer, H.F.: Nonlinear mechanical model for the description of propellant sloshing. AIAA J. 4, 1662–1668 (1966)

    Article  Google Scholar 

  • Bauer, H.F., Hsu, T.-M., Wang, J.T.-S.: Liquid Sloshing in Elastic Containers. NASA CR-882 (1967)

    Google Scholar 

  • Dodge, F.T.: Analytical Representation of Lateral Sloshing by Equivalent Mechanical Models. The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106. (1966)

    Google Scholar 

  • Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes. J. Fluid Mech. 523, 199–218 (2005)

    Google Scholar 

  • Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 3. Base ratio perturbations. J. Fluid Mech. 551, 93–116 (2006)

    Google Scholar 

  • Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487, 1–42 (2003)

    Article  MathSciNet  Google Scholar 

  • Faltinsen, O.M., Lukovsky, I.A., Timokha, A.N.: Resonant sloshing in an upright annular tank. J. Fluid Mech. 804, 608–645 (2016)

    Article  MathSciNet  Google Scholar 

  • Farid, M., Gendelman, O.V.: Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel. J. Sound Vib. 379, 191–212 (2016)

    Article  Google Scholar 

  • Fischer, D.: Dynamic fluid effects in liquid-filled flexible cylindrical tanks. Earthq. Eng. Struct. Dyn. 7, 587–601 (1979)

    Article  Google Scholar 

  • Fischer, F.D., Rammerstorfer, F.G.: A refined analysis of sloshing effects in seismically excited tanks. Int. J. Press. Vessel. Pip. 76, 693–709 (1999)

    Article  Google Scholar 

  • Govorukhin, V.: Calculation Lyapunov Exponents for ODE. MATLAB Central File-Exchange (2004)

    Google Scholar 

  • Haroun, M.A., Housner, G.W.: Seismic design of liquid storage tanks. J. Tech. Counc. ASCE. 107, 191–207 (1981)

    Article  Google Scholar 

  • Housner, G.W.: Dynamic pressures on accelerated fluid containers. Bull. Seismol. Soc. Am. 47, 15–35 (1957)

    Article  Google Scholar 

  • Housner, G.W.: The dynamic behavior of water tanks. Bull. Seismol. Soc. Am. 53, 381–387 (1963)

    Article  Google Scholar 

  • Ibrahim, R.A.: Multiple internal resonance in a structure-liquid system. J. Eng. Ind. 98, 1092 (1976)

    Article  Google Scholar 

  • Ibrahim, R.A., Barr, A.D.S.: Autoparametric resonance in a structure containing a liquid, part I: Two mode interaction. J. Sound Vib. 42, 159–179 (1975a)

    Google Scholar 

  • Ibrahim, R.A., Barr, A.D.S.: Autoparametric resonance in a structure containing a liquid, part II: Three mode interaction. J. Sound Vib. 42, 181–200 (1975b)

    Google Scholar 

  • Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. (2005)

    Google Scholar 

  • Jolie, M., Hassan, M.M., El Damatty, A.A.: Assessment of current design procedures for conical tanks under seismic loading. Can. J. Civ. Eng. 40, 1151–1163 (2013)

    Article  Google Scholar 

  • Kana, D.D.: Validated spherical pendulum model for rotary liquid slosh. J. Spacecr. Rockets. 26, 188–195 (1989)

    Article  Google Scholar 

  • Miles, J.W.: Stability of forced oscillations of a spherical pendulum 2, 21–32 (1961)

    Google Scholar 

  • Miles, J.: Resonant motion of a spherical pendulum. Phys. D Nonlinear Phenom. 11, 309–323 (1984a)

    Google Scholar 

  • Miles, J.W.: Resonantly forced surface waves in a circular cylinder. J. Fluid Mech. 149, 15–31 (1984b)

    Google Scholar 

  • Parkus, H.: Modes and frequencies of vibrating liquid-filled cylindrical tanks. Int. J. Eng. Sci. 20, 319–326 (1982)

    Article  Google Scholar 

  • Royon-Lebeaud, A., Hopfinger, E.J.: Liquid sloshing and wave breaking in circular and square-base cylindrical containers. J. Fluid Mech. 577, 467–494 (2007)

    Article  MathSciNet  Google Scholar 

  • Tedesco, J.W., Landis, D.W., Kostem, C.N.: Seismic analysis of cylindrical liquid storage tanks. Comput. Struct. 32, 1165–1174 (1989)

    Article  Google Scholar 

  • Veletsos, A.S.: Seismic effects in flexible liquid storage tanks. In: Proceedings of the 5th World Conference on Earthquake Engineering, pp. 630–639 (1974)

    Google Scholar 

  • Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D. 285–317 (1985)

    Google Scholar 

  • Zou, C., Wang, D.: A simplified mechanical model with fluid—structure interaction for rectangular tank sloshing under horizontal excitation. Adv. Mech. Eng. 7, 1–16 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to PAZY Foundation (grant 298/18) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Gendelman .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} A_{11} & = - \frac{{c_{2} \Omega^{2} \left[ {4\left( {\mu + 1} \right)\Omega^{2} + c_{1}^{2} } \right]}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{12} & = - \frac{{\Omega \left\{ {8\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 6\mu c_{1} c_{2} + 2c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} } \right\}}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{13} & = - \frac{{\Omega^{2} \left\{ { - 4\Omega^{2} c_{1} + \left[ {c_{1}^{2} - 4\mu \kappa \left( {1 + \mu } \right)} \right]c_{2} - 4\mu \kappa c_{1} } \right\}}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{14} & = \frac{{2\Omega \left\{ {\left[ {c_{1} c_{2} \left( {1 + \mu } \right) + c_{1}^{2} - 4\mu \kappa } \right]\Omega^{2} + \mu \kappa c_{1} c_{2} } \right\}}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{21} & = - \frac{{\mu c_{2} \Omega^{2} \left[ { - 4\Omega^{2} + c_{1} c_{2} } \right]}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{22} & = \frac{{2\Omega^{3} \mu c_{2} \left[ {\left( {1 + \mu } \right)c_{2} + c_{1} } \right]}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{23} & = - \frac{{4\Omega^{4} c_{1} + \left[ {c_{1} \left( {1 + \mu } \right)c_{2}^{2} + 4c_{2} \mu^{2} \kappa + 4\mu \kappa c_{1} } \right]\Omega^{2} + \mu \kappa c_{1} c_{2}^{2} }}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ A_{24} & = - \frac{{\left\{ {8\Omega^{4} + \left[ {2\left( {1 + \mu } \right)^{2} c_{2}^{2} + 6\mu c_{1} c_{2} + 4c_{1}^{2} - 8\mu \kappa } \right]\Omega^{2} - c_{2}^{2} \left( {2\kappa \mu^{2} - c_{1}^{2} + 2\mu \kappa } \right)} \right\}\Omega }}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \end{aligned}$$
$$\begin{aligned} B_{11} & = - \frac{{\left[ {4\left( {1 + \mu } \right)^{2} c_{2} + 4\mu c_{1} } \right]\Omega^{2} + c_{1}^{2} c_{2} }}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ B_{12} & = - \frac{{2A_{11} }}{{\Omega c_{2} }} \\ \\ B_{21} & = \frac{{2A_{22} }}{{\Omega c_{2} }} \\ \\ B_{22} & = - \frac{{2A_{21} }}{{\Omega c_{2} }} \\ \\ C_{11} & = - \frac{{Fc_{1} A_{22} }}{{\Omega^{2} c_{2} \mu }} \\ \\ C_{21} & = - \frac{{Fc_{1} A_{21} }}{{\Omega^{2} c_{2} \mu }} \\ \\ C_{31} & = - \frac{{2\left[ {\left( {1 + \mu } \right)^{2} c_{2}^{2} + \mu c_{1} c_{2} + 4\Omega^{2} } \right]\Omega F}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \\ \\ C_{41} & = \frac{{\left[ {\left( {1 + \mu } \right)c_{2}^{2} + 4\Omega^{2} } \right]c_{1} F}}{{16\Omega^{4} + \left[ {4\left( {\mu + 1} \right)^{2} c_{2}^{2} + 8\mu c_{1} c_{2} + 4c_{1}^{2} } \right]\Omega^{2} + c_{1}^{2} c_{2}^{2} }} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zusman, D., Gendelman, O.V. (2021). Effect of Finite Vessel Stiffness on Transition from Two-Dimensional Liquid Sloshing to Swirling: Reduced-Order Modeling. In: Altenbach, H., Amabili, M., Mikhlin, Y.V. (eds) Nonlinear Mechanics of Complex Structures. Advanced Structured Materials, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-030-75890-5_14

Download citation

Publish with us

Policies and ethics