Skip to main content

Roles of Cerebellum-Brainstem Loops in Predictive Optokinetic Eye Velocity Control in Fish, Mice, and Humans

  • 586 Accesses

Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Predictive motor control is employed ubiquitously in the animal kingdom. The optokinetic response (OKR), a reflexive eye movement present in most vertebrates, was found to be predictive. Recent studies demonstrated that the cerebellum is necessary but not sufficient for the acquisition of predictive (p) OKR. This chapter reviews recent findings on the roles of cerebellum-brainstem loops in pOKR. First, behavioral characteristics and neuronal circuits subserving pOKR are overviewed. Next, effects of cerebellectomy on acquisition and maintenance of pOKR are summarized along with Purkinje cell activities. Results from cross-species comparisons of pOKR are then summarized, pointing out that a distinctive difference between animals that acquire pOKR and those that don’t is the presence of the velocity storage mechanism (VSM). Finally, the importance of the closed VSM-cerebellar neural loops is discussed in the context of counting passage of time to start and stop the eyes predictively in the adaptive OKR control.

Keywords

  • Eye movement
  • Velocity storage mechanism
  • Predictive control
  • Optokinetic response
  • Visual stabilization
  • Goldfish
  • Zebrafish
  • Medaka
  • Carp
  • Mouse
  • Human

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-75817-2_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-75817-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3

References

  • Aksay, E., Baker, R., Seung, H. S., & Tank, D. W. (2000). Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. Journal of Neurophysiology, 84(2), 1035–1049.

    CrossRef  CAS  PubMed  Google Scholar 

  • Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R., & Tank, D. W. (2001). In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nature Neuroscience, 4(2), 184–193.

    CrossRef  CAS  PubMed  Google Scholar 

  • Aksay, E., Olasagasti, I., Mensh, B. D., Baker, R., Goldman, M. S., & Tank, D. W. (2007). Functional dissection of circuitry in a neural integrator. Nature Neuroscience, 10(4), 494–504.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman, J., & Bayer, S. A. (1997). Development of the cerebellar system in relation to its evolution, structure, and function. Press.

    Google Scholar 

  • Beck, J. C., Rothnie, P., Straka, H., Wearne, S. L., & Baker, R. (2006). Precerebellar hindbrain neurons encoding eye velocity during vestibular and optokinetic behavior in the goldfish. Journal of Neurophysiology, 96(3), 1370–1382.

    CrossRef  PubMed  Google Scholar 

  • Blazquez, P. M., & Highstein, S. M. (2007). Visual-vestibular interaction in vertical vestibular only neurons. Neuroreport, 18(13), 1403–1406.

    CrossRef  PubMed  Google Scholar 

  • Butler, A. B. (1996). Hodos, H. Comparative Vertebrate Neuroanatomy.

    Google Scholar 

  • Cohen, B., Uemura, T., & Takemori, S. (1973). Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). International Journal of Equilibrium Research, 3, 88–93.

    CAS  PubMed  Google Scholar 

  • Cohen, B., Matsuo, V., & Raphan, T. (1977). Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. The Journal of Physiology, 270(2), 321–344.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, H., Cohen, B., Raphan, T., & Waespe, W. (1992). Habituation and adaptation of the vestibuloocular reflex: A model of differential control by the vestibulocerebellum. Experimental Brain Research, 90, 526–538.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cohen, B., Dai, M., Yakushin, S. B., & Raphan, T. (2008). Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Progress in Brain Research, 171, 543–553.

    CrossRef  PubMed  Google Scholar 

  • Collewijn, H. (1976). Impairment of optokinetic (after-)nystagmus by labyrinthectomy in the rabbit. Experimental Neurology, 52, 146–156.

    CrossRef  CAS  PubMed  Google Scholar 

  • Collewijn, H., & Grootendorst, A. F. (1979). Adaptation of optokinetic and vestibulo-ocular reflexes to modified visual input in the rabbit. Progress in Brain Research, 50, 771–781.

    CrossRef  CAS  PubMed  Google Scholar 

  • Debowy, O., & Baker, R. (2011). Encoding of eye position in the goldfish horizontal oculomotor neural integrator. Journal of Neurophysiology, 105(2), 896–909.

    CrossRef  PubMed  Google Scholar 

  • Dieringer, N., Reichenberger, I., & Graf, W. (1992). Differences in optokinetic and vestibular ocular reflex performance in teleosts and their relationship to different life styles. Brain, Behavior and Evolution, 39, 289–304.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dohaku, R., et al. (2019). Tracing of afferent connections in the zebrafish cerebellum using recombinant rabies virus. Front Neural Circuits, 13, 30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger, T. E. (1983). The gustatory system in teleost fish. In R. G. Northcutt & R. E. Davis (Eds.), Fish neurobiology (pp. 285–319). University of Michigan Press.

    Google Scholar 

  • Fuchs, A. F., & Mustari, M. J. (1993). The optokinetic response in primates and its possible neuronal substrate. Reviews of Oculomotor Research, 5, 343–369.

    CAS  PubMed  Google Scholar 

  • Graf, W., Spencer, R., Baker, H., & Baker, R. (1997). Excitatory and inhibitory vestibular pathways to the extraocular motor nuclei in goldfish. Journal Neurosphysiol, 77(5), 2765–2779.

    CrossRef  CAS  Google Scholar 

  • Hibi, M., & Shimizu, T. (2012). Development of the cerebellum and cerebellar neural circuits. Developmental Neurobiology, 72, 282–301.

    CrossRef  PubMed  Google Scholar 

  • Hirata, Y., & Highstein, S. M. (2001). Acute adaptation of the vestibuloocular reflex: Signal processing by floccular and ventral parafloccular Purkinje cells. Journal of Neurophysiology, 85(5), 2267–2288.

    CrossRef  CAS  PubMed  Google Scholar 

  • Holstein, G. R., Martinelli, G. P., & Cohen, B. (1999). The ultrastructure of GABA-immunoreactive vestibular commissural neurons related to velocity storage in the monkey. Neuroscience, 93, 171–181.

    CrossRef  CAS  PubMed  Google Scholar 

  • Inagaki, K., & Hirata, Y. (2017). Computational theory underlying acute Vestibulo-ocular reflex motor learning with cerebellar long-term depression and long-term potentiation. Cerebellum, 16(4), 827–839.

    CrossRef  PubMed  Google Scholar 

  • Ito, M., Jastreboff, P. J., & Miyashita, Y. (1979). Adaptive modification of the rabbit's horizontal vestibulo-ocular reflex during sustained vestibular and optokinetic stimulation. Experimental Brain Research, 37(1), 17–30.

    CrossRef  CAS  PubMed  Google Scholar 

  • Karmali, F. (2019). The velocity storage time constant: Balancing between accuracy and precision. Progress in Brain Research, 248, 269–276.

    CrossRef  PubMed  Google Scholar 

  • Katoh, A., Kitazawa, H., Itohara, S., & Nagao, S. (1998). Dynamic characteristics and adaptability of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. Proceedings of the National Academy of Sciences of the United States of America, 95, 7705–7710.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz, E., Vianney de Jong, J. M., Buettner-Ennever, J., & Cohen, B. (1991). Effects of midline medullary lesions on velocity storage and the vestibulo-ocular reflex. Experimental Brain Research, 87, 505–520.

    CrossRef  CAS  PubMed  Google Scholar 

  • Laurens, J., & Angelaki, D. E. (2011). The functional significance of velocity storage and its dependence on gravity. Experimental Brain Research, 210(3–4), 407–422.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Major, G., Baker, R., Aksay, E., Mensh, B., Seung, H. S., & Tank, D. W. (2004a). Plasticity and tuning by visual feedback of the stability of a neural integrator. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7739–7744.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Major, G., Baker, R., Aksay, E., Seung, H. S., & Tank, D. W. (2004b). Plasticity and tuning of the time course of analog persistent firing in a neural integrator. Proceedings of the National Academy of Sciences of the United States of America, 101(20), 7745–7750.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh, E., & Baker, R. (1997). Normal and adapted visuooculomotor reflexes in goldfish. Journal of Neurophysiology, 77(3), 1099–1118.

    CrossRef  CAS  PubMed  Google Scholar 

  • Masseck, O. A., & Hoffmann, K. P. (2009). Question of reference frames: Visual direction-selective neurons in the accessory optic system of goldfish. Journal of Neurophysiology, 102(5), 2781–2789.

    CrossRef  PubMed  Google Scholar 

  • Matsuzawa, Y., Baker, R., & Hirata, Y. (2017). Human predictive optokinetic eye movement is correlated with the presence of velocity storage: Demonstration in a virtual reality environment. In Society for Neuroscience.

    Google Scholar 

  • McElligott, J. G., Weiser, M., & Baker, R. (1995). Effect of temperature on the normal and adapted vestibulo-ocular reflex in the goldfish. Journal of Neurophysiology, 74(4), 1463–1472.

    CrossRef  CAS  PubMed  Google Scholar 

  • Miki, S., Baker, R., & Hirata, Y. (2018). Cerebellar role in predictive control of eye velocity initiation and termination. The Journal of Neuroscience, 38, 10371–10383.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki, S., Urase, K., Baker, R., & Hirata, Y. (2020). Velocity storage mechanism drives a cerebellar clock for predictive eye velocity control. Scientific Reports, 10(1), 6944.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao, S. (1983). Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Experimental Brain Research, 53(1), 36–46.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nieuwenhuys, R. (1967). Comparative anatomy of the cerebellum. Progress in Brain Research, 25, 1–93.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pastor, A. M., Torres, B., Delgado-Garcia, J. M., & Baker, R. (1991). Discharge characteristics of medical rectus and abducens motor neurons in the goldfish. Journal of Neurophysiology, 66(6), 2125–2140.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pastor, A. M., de la Cruz, R. R., & Baker, R. (1992). Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation. Journal of Neurophysiology, 68(6), 2003–2015.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pastor, A. M., de la Cruz, R. R., & Baker, R. (1994). Cerebellar role in adaptation of the goldfish vestibuloocular reflex. Journal of Neurophysiology, 72(3), 1383–1394.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pastor, A. M., De la Cruz, R. R., & Baker, R. (1997). Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. Progress in Brain Research, 114, 359–381.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pastor, A. M., Calvo, P. M., de la Cruz, R. R., Baker, R., & Straka, H. (2019). Discharge properties of morphologically identified vestibular neurons recorded during horizontal eye movements in the goldfish. Journal of Neurophysiology, 121, 1865–1878.

    CrossRef  CAS  PubMed  Google Scholar 

  • Pinzon Morales, R. D., Miki, S., Hirata, Y. (2019). A neural mechanism for predictive optokinetic eye movement. 28th annual computational neuroscience meeting, https://doi.org/10.13140/RG.2.2.12852.60804

  • Raphen, T. (2020). Vestibular, locomotor, and vestibulo-autonomic research: 50 years of collaboration with Bernard Cohen. Journal of Neurophysiology, 123(1), 329–345.

    CrossRef  Google Scholar 

  • Shinji Y, Hirata Y (2020) Neural network model of the optokinetic eye movement configured by the cerebellum-brainstem connectome. Proc. Annual meeting of the Japanese Neural Network Society.

    Google Scholar 

  • Soga, J., Matsuyama, M., Miura, H., Highstein, S., Baker, R., & Hirata, Y. (2020). Cerebellar roles in frequency competitive motor learning of the Vestibulo-ocular reflex. Neuroscience, S0306-4522(20), 30580–30587.

    Google Scholar 

  • Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Straka, H., Beck, J. C., Pastor, A. M., & Baker, R. (2006). Morphology and physiology of the cerebellar vestibulolateral lobe pathways linked to oculomotor function in the goldfish. Journal of Neurophysiology, 96(4), 1963–1980.

    CrossRef  PubMed  Google Scholar 

  • Waespe, W., & Henn, V. (1985). Cooperative functions of vestibular nuclei neurons and floccular Purkinje cells in the control of nystagmus slow phase velocity: Single cell recordings and lesion studies in the monkey. Reviews of Oculomotor Research, 1, 233–250.

    CAS  PubMed  Google Scholar 

  • Waespe, W., & Henn, V. (1987). Gaze stabilization in the primate. The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit. Reviews of Physiology, Biochemistry and Pharmacology, 106, 37–125.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yakushin, S. B., Raphan, T., & Cohen, B. (2017). Coding of velocity storage in the vestibular nuclei. Frontiers in Neurology, 8, 10.3389.

    CrossRef  Google Scholar 

  • Yokota, J., Reisine, H., & Cohen, B. (1992). Nystagmus induced by electrical stimulation of the vestibular and prepositus hypoglossi nuclei in the monkey: Evidence for site of induction of velocity storage. Experimental Brain Research, 92, 123–138.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zee, D. S., Yee, R. D., & Robinson, D. A. (1976). Optokinetic responses in labyrinthine-defective human beings. Brain Research, 113, 423–428.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Hirata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hirata, Y. (2021). Roles of Cerebellum-Brainstem Loops in Predictive Optokinetic Eye Velocity Control in Fish, Mice, and Humans. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_9

Download citation